张俊杰 中国
超精密加工机理与工艺
教授||博士生导师
目前就职机电工程学院
所在学科 机械工程
永久地址 http://homepage.hit.edu.cn/junjiezhang

基本信息

张俊杰博士,男,汉族,1982年5月出生于湖北省孝感市。现任哈尔滨工业大学机电工程学院教授,博士生导师,哈尔滨工业大学青年拔尖人才,第二届“上银优秀机械博士论文奖”佳作奖。研究方向为超精密加工基础理论与工艺。先后主持国家自然科学基金2项、博士后基金4项、博士点基金1项、重点实验室开放基金1项、哈尔滨工业大学校基金4项、横向项目5项等17项科研项目,并参与国家自然科学基金3项。发表SCI论文30余篇,荣获2016年教育部自然科学二等奖,现为中国机械工程学会高级会员、中国机械工程学会生产工程分会精密工程与微纳技术专业委员会委员、精密测试技术及仪器国家重点实验室客座研究员、国家自然科学基金函评专家、2个国际ESCI期刊编委、16个国际SCI期刊审稿人。

   

教育经历

  • 2008年9月-2009年8月          德国Ruhr-University Bochum          国家公派博士联合培养    
  • 2005年9月-2011年7月          哈尔滨工业大学机电工程学院         硕博连读    
  • 2001年9月-2005年7月          哈尔滨工业大学机电工程学院         本科    

工作经历

  • 2017年04月-至今                       哈尔滨工业大学机电工程学院          博士生导师
  • 2017年01月-至今                       哈尔滨工业大学机电工程学院          教授
  • 2014年05月-2017年4月             哈尔滨工业大学机电工程学院          硕士生导师
  • 2013年12月-2016年12月           哈尔滨工业大学机电工程学院          副教授
  • 2012年01月-2013年01月           德国Ruhr-University Bochum           博士后
  • 2011年08月-2013年12月           哈尔滨工业大学机电工程学院          讲师

荣誉称号

  • 2013年      哈尔滨工业大学青年拔尖人才选聘计划      教授
  • 2013年      哈尔滨工业大学青年拔尖人才选聘计划      副教授
  • 2012年      第二届“上银优秀机械博士论文奖”        佳作奖
  • 2011年      黑龙江省优秀毕业生、哈尔滨工业大学优秀毕业生
  • 2010年      哈尔滨工业大学第四届研究生十佳英才提名奖
  • 2009年      哈尔滨工业大学第十四批正在进行的优秀博士学位论文
  • 2009年      宝钢优秀学生奖学金

学术兼职

  • 2012.12——        中国机械工程学会高级会员
  • 2014.07——        精密测试技术及仪器国家重点实验室客座研究人员
  • 2016.12——        AIMS Materials Science编委
  • 2017.09——        The Journal of Engineering编
  • 2017.07——        国际纳米制造学会(The International Society of Nanomanufacturing)会员
  • SCI期刊审稿人:AIP Advances; Chinese Physics B; Current Nanoscience; Computational Materials Science; Journal of Alloys and Compounds; Journal of Applied Polymer Science; Journal of Vacuum Science and Technology B; Journal of Mechanical Science and Technology; Journal of Manufacturing Processes; Materials Chemistry and physics; Materials Science & Engineering B; Molecular Simulation; Nanoscale Research Letters; Nanoscience and Nanotechnology Letters; SCIENCE CHINA Physics, Mechanics & Astronomy; Sensors & Actuators: A. Physical; Surface and Interface Analysis.

 

招生信息!

热烈欢迎有志于投身基础科研的研究生和本科生加入,具有良好的英语读写能力和编程能力者优先考虑,我们将为您提供完备的科研环境和细致的指导,共同携手向前!

招生数量:博士每年1-2名;硕士每年2-3名;本科每年2-3名。

研究领域:特种材料超精密加工机理与工艺;功能表面微结构制备与表征;计算材料科学;精密医疗器械。

 

研究亮点

张俊杰教授荣获ASPEN优秀青年科学家奖
发布时间:2017-11-21
简单介绍:

张俊杰教授于2017年11月13日-18日赴韩国首尔参加了第七届亚洲精密工程和纳米技术国际会议(7th Asian Society for Precision Engineering and Nanotechnology)。本次会议有来自中国、日本、韩国、新加坡、澳大利亚等国家和地区的200多名学者参加。张俊杰教授做了分会场口头报告,并担任分会场High Speed and Precision Machining 1的主席。会议结束后,张俊杰教授熔化ASPEN优秀青年科学家奖,本次共有日本、韩国、中国大陆和中国台湾的7名优秀青年学者获此殊荣。

 

 

张俊杰教授在首届中德双边研讨会上做报告
发布时间:2017-09-05
简单介绍:

由中德科学中心全额资助、德国鲁尔大学和哈尔滨工业大学联合承办的首届中德“面向材料的微纳制造模拟与实验”双边研讨会于2017年9月3日至8日在哈尔滨举行。会议德方主席为德国材料学会主席、鲁尔大学教授、哈尔滨工业大学长江学者讲座教授Alexander Hartmaier,中方主席为机电学院孙涛教授和闫永达教授。张俊杰教授担任中方秘书。本次研讨会共邀请了12位德国代表、1位美国代表和19位中国代表,他们就微纳制造技术及关键部件、过程分析与表征、建模与仿真、表面工程、精密加工与磨损的协同研究等议题开展了深入交流和讨论。张俊杰教授在会上做了题为“Influence of texture thickness on tribological properties of textured stainless steel”的口头报告,并与中德学者开展了深入交流。会后中德代表参观了我校博物馆和精密工程研究所,并商讨了第二届研讨会举办事宜。本研讨会为来自工程和材料领域的中国和德国学者开展合作研究提供一个重要的交流平台,为两国学者之间建立长期的多学科合作提供了积极作用。 

    

 

 

张俊杰教授担任The Journal of Engineering副编辑
发布时间:2017-09-11
简单介绍:

近日,张俊杰教授应邀加入Journal of Engineering担任副编辑。

 

张俊杰教授入选国际纳米制造学会活跃会员
发布时间:2017-07-28
简单介绍:

近日,张俊杰教授被国际纳米制造学会授予活跃会员称号。

张俊杰教授通过哈尔滨工业大学2017年度博士生指导教师遴选
发布时间:2017-04-28
简单介绍:

根据《哈尔滨工业大学关于进行2017年度博士生指导教师遴选工作的通知》(研院发〔2017〕16号),经各院(系)博导遴选评审组织初选及第161次校学位委员会评议,张俊杰教授通过博士生指导教师遴选,列入哈尔滨工业大学2018年博士研究生招生简章,从2018年起招收指导博士研究生,欢迎大家报考!

祝贺张俊杰入选2016年哈尔滨工业大学“青年拔尖人才选聘计划”,破格晋升教授!
发布时间:2017-03-18
简单介绍:

经本人申请、学校评审通过,张俊杰入选2016年度“哈尔滨工业大学青年拔尖人才选聘计划”,破格晋升为教授。

张俊杰教授的研究方向为超精密加工基础理论与工艺,功能微纳结构制备。一方面通过基础研究积极探索微观尺度下机械加工中的科学问题,另一方面通过创新性的基础研究来实现应用研究中的工艺创新、解决关键技术问题。作为负责人承担15项科研项目,包括2项国家自然科学基金。共发表SCI论文30余篇,他引150余次。担任国家自然科学基金函评专家、3个国际期刊编委、16个国际SCI期刊审稿人。荣获2016年度教育部自然科学二等奖1项(排名第2),目前担任中国机械工程学会高级会员、精密测试技术及仪器国家重点实验室客座研究人员.

纳米刻划引起的纳米晶体铜的孪晶变形
发布时间:2014-06-23
简单介绍:

孪晶变形是金属材料的一种重要变形机理。前人的研究多集中于处于拉伸、压痕等单轴应力作用下的金属材料的孪晶变形,而对于具有多轴应力、局部变形等特性的刻划过程中的孪晶变形研究较少。我们建立了三维纳米晶体铜模型,采用分子动力学仿真研究了其纳米刻划过程中产生的孪晶变形机理,以及晶粒尺寸和应力状态对孪晶变形的影响。研究结果表明,位错形核和运动、晶界变形、孪晶变形均参与并影响纳米晶体铜的加工变形过程,并且这三种变形机理之间存在强烈的竞争关系。在工件材料的亚表面损伤层中有孪晶界生成,并且孪晶界迁移是材料的一种重要变形方式。孪晶界是通过从晶界上发射的不全位错分解而形成的,而孪晶界迁移是由于不全位错从孪晶界和晶界交叉处发射并在孪晶界上滑移而造成的。形成的孪晶界数量在压痕阶段中随着晶粒尺寸的增加而减小,而在刻划阶段中随着晶粒尺寸的增加而增加。本工作在Journal of Applied Physics发表。

Junjie Zhang, Tao Sun, Yongda Yan, Shen Dong, Xiaodong Li. Atomistic investigation of scratching-induced deformation twinning in nanocrystalline Cu. Journal of Applied Physics (2012) 112: 073526.

纳米孪晶铜纳米刻划的分子动力学仿真研究
发布时间:2012-09-26
简单介绍:

纳米孪晶铜具有优异的性质,是一种重要的纳米结构材料。然而,前人对于纳米孪晶铜的研究主要集中在其力学性能等方面,而对其摩擦磨损研究极少。我们首次采用分子动力学仿真方法研究了纳米孪晶铜纳米刻划过程,揭示了纳米孪晶铜的磨损机理、摩擦性质、加工表面形貌等。研究结果表明,去孪晶detwinning是材料的一种重要变形方式。孪晶界间距对刻划过程具有重要的影响。存在一个临界孪晶界间距对应最大的摩擦系数,这个临界孪晶界间距是由工件材料的变形机理发生转变而引起的。当孪晶界间距较小时,不全位错主要沿着孪晶界平面进行滑移;当孪晶界间距较大时,开始出现倾斜于孪晶界平面的不全位错,并且孪晶变形更为显著。本研究工作发表在Physical Review B上:

Junjie Zhang, Yujie Wei, Tao Sun, Alexander Hartmaier, Yongda Yan and Xiaodong Li. Twin boundary spacing-dependent friction in nanotwinned copper. PRB (2012) 85: 054109.

刻划速度相关的聚苯乙烯刻划加工变形
发布时间:2013-01-31
简单介绍:

聚苯乙烯是用于制备激光聚变球形靶丸的一种重要材料,对其进行机械加工要求从分子尺度理解其变形机理。我们与中国工程物理研究院激光聚变研究中心的杜凯研究员等合作,采用全原子模型和高精度键对势能函数,首次使用分子动力学仿真方法研究了聚苯乙烯的纳米刻划加工过程。研究结果发现链间的整体滑动和链内的局部变形是聚苯乙烯产生永久变形的两个变形模式,且它们之间存在强烈的竞争关系。并且,我们通过定量表征二面角的变化发现链内的局部变形比链间的整体滑动更稳定。刻划速度对这两个变形模式的竞争具有显著影响,从而影响刻划加工的结果。本工作发表在Current Nanoscience:

Kai Du, Yongjian Tang, Junjie Zhang*, Fangda Xu, Yongda Yan and Tao Sun. Velocity-dependent Nanoscratching of Amorphous Polystyrene. Current Nanoscience 9 (2013) 153-158.

德国Ruhr-Universität Bochum Prof. Alexander Hartmaier讲学
发布时间:2013-06-09
简单介绍:

受学校国际合作与交流基金资助,应我校机电工程学院孙涛教授、闫永达教授邀请,德国Ruhr-Universität Bochum Prof. Alexander Hartmaier来我校交流访问。访问期间将为我校师生带来两次学术报告,讲学时间和地点具体安排如下,欢迎相关专业感兴趣的老师和同学参加。

 

讲学报告一:

题目:Higher education at Ruhr-Universität Bochum, Germany

时间:2013年6月14日(周五)上午8:00~10:00

地点:诚意楼22

Abstract: The educational system in Germany has undergone dramatic changes in recent years. Due to the homogenization of higher education throughout Europe the traditional German “Diplom” has been replaced by Bachelor and Master degrees. The Ruhr-Universitaet Bochum has been amongst the first universities in Germany to fully adapt its engineering courses to the new system. In this lecture an overview will be given on the basic elements of education in Germany, from high-school over Bachelor and Master to the doctorate degree. Generally, it can be said that the level of self-dependent learning is increasing steadily during an educational career. Furthermore, early individual research experience is fostered during the Bachelor phase. The level of individual research is increasing significantly during the Master phase and the PhD program, finally, is almost exclusively devoted to research on a high level. At the end of the lecture a short introduction on the international Master courses in engineering and natural sciences offered at Ruhr-Universitaet Bochum is given to provide a basis for discussions on possibilities of student exchange programs on all levels of education.

 

讲学报告二:

题目:Microstructure and mechanical properties of metals

时间:2013年6月14日(周五)下午14:00~16:00

地点:新技术楼210会议室

Abstract: In this lecture the basic elements of microstructure of metallic materials are introduced and the correlation between microstructure and mechanical properties of metals are discussed. This leads to a physical description of microstructural mechanisms leading to plastic deformation and failure. A special focus of this lecture is laid on dislocations and their properties. Different experimental and modelling methods are introduced by which the properties of dislocations can be determined. Since plastic deformation of metals is caused by the motion of dislocations, all hardening mechanisms are effectively obstructing dislocation motion. The different hardening mechanisms and their effectiveness for material strengthening and their implication for material failure are discussed in the lecture. Finally the concept of micromechanical modelling is introduced by which a direct link between microstructure and mechanical properties can be established within the framework of scalebridging materials modelling.

 

专家简介:

Alexander Hartmaier received his Diplom-Physiker from University of Kaiserslautern of Germany in 1995, and his Dr. rer. Nat from University of Stuttgart of Germany in 2000. He served as group leader at the Max Planck Institute for Metals Research of Germany between 2002 and 2005, and as Professor at the Friedrich-Alexander-University Erlangen-Nuremberg of Germany between 2005 and 2008. He is now a Professor of Materials Science and Director of the department “Micromechanical modeling of macroscopic material behavior” at the Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-University Bochum, Germany. His current research focuses on mechanical and functional properties of heterogeneous materials, micromechanical modelling and micro- and nanometrological experiments.

Summer Compact Course—Advanced Chapters in Mechanics of Materials
发布时间:2014-06-23
简单介绍:

Welcome to the summer compact course "Advanced Chapters in Mechanics of Materials" given by Prof. Dr. Alexander Hartmaier at Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-University Bochum, Germany.

Below please find the detailed information about the course:

  • Title of Course: Advanced Chapters in Mechanics of Materials
  • Session of Course: 16
  • Teaching Schedule:
  • Part1: class 9-10 (18:30-20:15) from Wednesday (25 June) to Saturday (28 June) in the first week of summer semester, Room 109 in ZhengXin Building(正心楼)
  • Part2: class 1-4 (08:00-11:45) from Monday (30 June) to Tuesday (1 July) in the second week of summer semester, Room 111 in ZhengXin Building(正心楼)
Summer Compact Course—Introduction to the Finite Element Method
发布时间:2014-06-23
简单介绍:

Welcome to the summer compact course "Introduction to the Finite Element Method" given by Prof. Dr. Bernhard Eidel at Centre for Computational Mechanics, University of Siegen, Germany.

Below please find the detailed information about the course:

  • Title of Course: Introduction to the Finite Element Method
  • Session of Course: 16
  • Teaching Schedule: Class 5-8 (13:45-17:30) from Monday (14 July) to Thursday (17 July) in the fourth week of summer semester, Room 213 in ZhengXin Building(正心楼)
恭喜姜雨琦同学获得2015年哈尔滨工业大学百优本科毕业设计论文奖
发布时间:2015-07-19
简单介绍:

姜雨琦本科证书

美国密西西比州立大学邵帅博士讲学通知
发布时间:2016.07.07
简单介绍:受“装备设计制造科学与技术”111创新引智基地项目资助,应机电学院副教授张俊杰邀请,美国密西西比州立大学邵帅博士来访我校,访问期间将举办学术报告进行交流,欢迎相关师生参加。 报告题目:Interface Engineering of Ultrafine-Scaled Materials 报告人:Dr. Shuai Shao 报告时间:2016年7月15日周五上午9:00-11:00 报告地点:新技术楼210会议室 Abstract Future advancements in energy technologies demand novel materials that tolerate extreme environments that exceed the capability of even the most advanced materials to date. For centuries, improvements in structural materials are largely based on enhancing the microstructures and properties of the constituents. In the recent years, with the discovery of various classes of ultrafine-scaled (UFS) materials (such as nano-multilayered composites, nano-crystalline materials, nano-twinned materials), materials science is entering a revolutionary era. Now, specific properties of the UFS materials can be attained through “interface engineering”, where the architecture/structure of the interfaces are carefully controlled. Interfaces are important in materials of any microstructural size scale, because they can act as sources, sinks, barriers, and storage sites for defects - including dislocations, which are the main carrier of plastic deformation. In nanostructured materials, interfaces dominate material’s mechanical response and can engender properties superior to those of their coarse-grained counterparts. However, the “interface engineering” of the UFS materials is hindered by the lack of an accurate, efficient materials model that incorporates the important role of the interfaces. The conventional materials models follow the ‘constituent-dominated paradigm’ and are unable to capture the physics of unit mechanisms at interfaces. Among the modern models, atomistic modeling can elucidate the unit processes occurring within/at/across interfaces but cannot predict macroscopic properties. Dislocation Dynamics (DD) models have the unique advantage of exploring the dislocation activity in single crystal, but typically do not incorporate the role of interfaces in mechanical deformation. Therefore, to achieve efficient “interface engineering”, my research takes a bottom-up multiscale approach which combines the advantages of the atomistic modeling and DD models. The focuses are: (1) to understand the interface’s structures and the role of interface in material’s deformation using atomic-scale study; (2) to develop a multiscale materials modeling tool by advancing the current DD models and incorporating interface physics characterized at atomic scale to predict mechanical performance of materials at meso-scale. Biosketch Shuai Shao is currently a Postdoctoral Research Associate at Center for Advanced Vehicular Systems (CAVS), Mississippi State University. He will be joining Louisiana State University as an assistant professor starting in Jan. 2017. His main research interest is multiscale modeling of ultra-fine scaled materials and additively manufactured materials. Dr. Shao received his Ph.D in Mechanical Engineering from Washington State University in May 2012. His thesis focused on the atomistic studies of deformation mechanisms in nanoscale multilayered metallic composites. After graduation, he continued to work at WSU on the statistical quantification of plastic deformation in small volumes. He joined the Materials Science and Technology Division of Los Alamos National Laboratory in November 2012. In February 2016, he joined CAVS. He has authored/co-authored over 23 articles in peer-reviewed journals and has given over 20 invited/regular presentations.
Copyright © 2016 哈尔滨工业大学网络与信息中心