
On Fair Designs of Cross-Chain Exchange for
Cryptocurrencies via Monte Carlo Simulation

Zini Wang1, Guangxin Jiang∗2, and Qiang Ye2

1School of Management, Shanghai University, Shanghai 200444, China
2School of Management, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

March 12, 2021

Abstract

Cryptocurrency is one of the earliest and the most successful applications of blockchain,
and it utilizes the distributed ledger, which is a commonly used technique in blockchain, to
make a decentralized transaction within the blockchain of a cryptocurrency. However, how to
make a decentralized transaction of cryptocurrencies between parties on different blockchains,
i.e., the cross-chain exchange, is not well-studied. In this paper, we develop a new method to
make cross-chain exchanges based on the classical atomic swap. We first study the optionality
embedded into the atomic swap and propose to add a premium into the atomic swap, and
then design a new procedure with the premium to guarantee the fairness of the cross-chain
exchange. We also provide an algorithm based on the least-squares Monte Carlo method to
estimate the premium and analyze the convergence of the algorithm. Moreover, we study
the cross-chain exchange with margin trading. We propose an adapted exchange procedure
to make a fair cross-chain exchange and an algorithm to estimate the fair premium under
the margin trading. Numerical experiments are provided to show the effectiveness of the
algorithms.

Keywords: Monte Carlo Simulation; Cryptocurrency and Blockchain; American Option; Atomic

Swap; Decentralized Exchange

1 Introduction

In the past decade, blockchain technology has been developed very fast and received a significant

amount of attention from both academia and industry. It has been widely studied and used in the

areas of finance (Iansiti and Lakhani 2017), supply chain (Kshetri 2018), healthcare (Angraal et al.

2017), and energy (Noor et al. 2018), to name a few. Cryptocurrency or cryptographic currency
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is one of the earliest and the most successful applications of blockchain. The bitcoin, which is the

first cryptocurrency using blockchain, is well-traded around the world. Besides bitcoin, some other

cryptocurrencies like ether and litecoin are created to better support real-world applications by

using some new blockchain techniques.

The key technology of the cryptocurrency is an open, distributed ledger that can effectively,

verifiably and permanently record transactions between two parties, so transactions in a cryp-

tocurrency world do not need trusted third-party intermediaries like banks. Take the bitcoin as

an example. The bitcoin blockchain is a public ledger that all nodes on the network have a copy

of the ledger. Once a transaction between two bitcoin wallets in the blockchain is committed, it is

broadcast to all nodes to be verified. After certain amount of time, all the accepted transactions

are packaged in a block, and this block is added to the blockchain. Then the new blockchain is

quickly published to all nodes without requiring central oversight. Such a way of transactions

without third-party intermediaries is called decentralized exchange.

In this paper, we consider how to make a fair decentralized exchange between parties on different

blockchains, which is known as cross-chain exchange. When the two parties belong to different

blockchains, they have no access to each other’s ledgers and cannot automatically verify whether

an asset is in fact owned by a party and can be transferred. So we need to use some blockchain

techniques, e.g., smart contracts, to make a safe and fair cross-chain exchange. In this paper, we

consider a new smart contract called atomic swap in the decentralized cross-chain exchange. The

atomic swap was originated in an online forum (see Nolan 2018, Herlihy 2018), and first applied

in transactions between decred and litecoin, which are two different cryptocurrencies. The atomic

swap uses hashed time lock contract (HTLC), which is a form of cryptographic escrow, to guarantee

the success of the transactions.

The atomic swap provides a doable way to conduct the cross-chain exchange, but there are still

some technical details to be addressed. As the party who initiates the transaction in the atomic

swap has the right to choose a transaction time in his favor before time lock, there is optionality

embedded in the atomic swap. Moreover, the volatilities of cryptocurrencies are generally high,

so the optionality cannot be ignored. The initiator may have arbitrage opportunities and benefit

from the current procedure of atomic swap. To make the exchange fair, the initiator should pay a

certain amount of premium to the counterparty. In this paper, we propose a fair procedure to make
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the cross-chain exchange. The most closely related work is Han et al. (2019), which considered a

simple cryptocurrency model and a binomial tree method to determine the premium. However, in

practice, the price of a cryptocurrency fluctuates heavily, so we need more sophisticated models to

describe the evolution of the price of the cryptocurrency. To allow for general pricing models, we

use the least-squares Monte Carlo method (Longstaff and Schwartz 2001, Stentoft 2004, Zanger

2013) to estimate the fair premium. Moreover, the new procedure can ensure that the payment of

the premium and the exchange contract take effect simultaneously, whereas the procedure in Han

et al. (2019) cannot. In summary, we believe our work offers the following contributions:

(1) We formulate the problem of fair cross-chain exchanges as an option pricing problem and

propose to add a premium into atomic swap. Based on that, we design a new procedure for

the cross-chain exchange with premium by constructing a series of smart contracts. This

new procedure can ensure the fairness of the cross-chain exchange, i.e., no one can cheat

each other by finding the loophole of the procedure.

(2) Under sophisticated pricing models of cryptocurrencies, we provide an efficient and general-

purpose algorithm to estimate the fair premium. The premium is used in the exchange

procedure to ensure the fairness of the cross-chain exchange, i.e., there is no arbitrage

opportunity in the exchange. We also analyze the convergence of the algorithm.

(3) We introduce margin trading to the cross-chain exchange, i.e., both sides of the exchange

deposit a fraction of their funds in the contract and deposit full principal when the exchange

is happening. Under this setting, we design a new and fair exchange procedure, which is

much more complicated than that without margin, and provide the algorithm to estimate

the premium.

Literature Review

Our work is related to two lines of literature. The first one is the cross-chain technique. There are

four major cross-chain techniques: notary schemes, sidechains and relays, distributed private key

control, and HTLC. The most representative scheme of notary schemes is the interledger protocol

(Thomas and Schwartz 2015) that aims to realize the coordination and communication between
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different blockchain ledgers. Sidechains and relays technique is referred to Polkadot (2020) and

Cosmos (2020). They are new blockchains based on anchoring tokens on the original chain, and

have an underlying architecture (Cosmos software development kit and substrate) for developers

to build blockchains that can be directly inserted into the corresponding ecosystem. Distributed

private key control entrusts the decentralized network to hold the user’s private key. The most

typical example refers to Wanchain (2020), which has traded bitcoin, ethereum, and other cryp-

tocurrencies across chains. HTLC (Bitcoinwiki 2019b) stipulates that both chains receive the

unlock information within a specified time and then transfer assets. The specific mechanism for

applying HTLC is atomic swap, see Bitcoinwiki (2019a), Liu (2018), and Han et al. (2019). The

advantage of the atomic swap is that it can avoid notary public and require little information about

the parties of the transaction. Compared with other techniques, the atomic swap is the most ma-

ture, simple, and clear, with the greatest possibility of wide implementation, so we consider it in

this paper.

The second related line of literature is about option pricing, especially, the American exchange

option pricing. Margrabe (1976) provides a closed-form formula for the price of the European

exchange option, and Carr (1988) studies the American exchange option, and proposed a closed-

form approximation formula to price it. Armada et al. (2007) propose an improved method based

on the model in Carr (1988), and it produces more accurate output. Andrikopoulos (2010) adopts a

quadratic approach to price the American exchange option, which provides an alternative function

of the option price. Recently, Cheang and Chiarella (2011) have proposed a method to price

exchange options under the assumption that the underlying asset price is governed by a jump

diffusion process, and Kim and Koo (2016) have considered the credit risk in pricing exchange

options.

For options driven by more complicated underlying asset models, Monte Carlo simulation is

a commonly used pricing tool. For example, Carr and Madan (2008) propose a framework for

pricing options driven by CGMY process and Meixner process models, and Fu (2007) applies

Monte Carlo simulation in variance gamma model; see Glasserman (2013) and Schoutens (2003)

for comprehensive overviews. Recently, Jiang et al. (2020) and Hong and Jiang (2019) propose a

framework called offline simulation online application that can build the formula of option price in

the offline simulation stage and apply the formula in real-time price quoting and risk hedging. In
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the above literatures, the price of the underlying asset is usually modeled as a continuous stochastic

process model. Whereas there are some works that use econometrics methods to model the price

of cryptocurrencies. For example, Chen et al. (2017) use ARIMA (autoregressive linear moving

average) and GARCH (generalized autoregressive conditional heteroscedasticity) model to conduct

an econometric analysis of bitcoin price. Katsiampa (2017) proposes to use the AR-CGARCH

(Autoregressive Component GARCH) model to explore the heteroskedasticity of bitcoin prices.

To study the prices of correlated cryptocurrencies, we may use a multivariate GARCH method

(Ruppert and Matteson 2015).

The paper is organized as follows. In Section 2, we provide a preliminary introduction to the

classical atomic swap. Then we analyze the optionality embedded in the classical atomic swap

and propose a new decentralized procedure with the premium in Section 3. We propose a method

to estimate the fair premium and provide the theoretical properties of the premium estimator in

Section 4. In Section 5, we introduce margin trading into the cross-chain exchange and study

its practical implementation issues. Numerical results are presented in Section 6, followed by

conclusions and discussions in Section 7.

2 Atomic Swap

In the financial market, when two parties want to exchange their currencies or assets, trusted

third-party intermediaries like banks and exchanges have to be involved to ensure the fairness and

smoothness of the transaction. Otherwise, one of the parties may cheat and do not transfer the

promised asset to the other after getting the counterparty’s asset. In a cryptocurrency world, the

atomic swap, which is a new smart contract technology, is created to enable the exchange of one

cryptocurrency for another without using trusted third-party intermediaries. In this section, we

introduce the atomic swap protocol. We use the same example in Liu (2018) and Herlihy (2018)

to illustrate the procedure of the classical atomic swap. Suppose that there are two parties named

Alice and Bob. Alice has α-coins and Bob has β-coins (the currency is usually called the coin in

the cryptocurrency world). Alice wants to exchange Bob’s 1 β-coin with her own 1 α-coin, and

Bob is willing to accept this transaction.
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The key to the atomic swap is the hashed time lock contract (HTLC). In the HTLC, there

are two locks, hashlock h, which locks the asset in the contract, and timelock t, which locks the

effective time of the contract. For the hashlock, if one party provides the correct secret s such that

h = H(s), where H(·) is a cryptographic hash function, then the contract is unlocked, and the asset

in the contract can be withdrawn. The timelock is used to set time constraints on the contract.

The basic steps of the atomic swap are provided in Figure 1. Before introducing the exchange

procedure, we first explain some notations in the figure. We call the blockchains of α-coins and

β-coins the α-chain and β-chain, respectively. For simplicity, we use “A” and “B” to represent

Alice and Bob, respectively. Since the atomic swap happens on these two blockchains, both Alice

and Bob have cryptocurrency wallets on these two blockchains. Specifically, Aα and Bα represent

the wallets of Alice and Bob on the α-chain, respectively; Aβ and Bβ represent the wallets of Alice

and Bob on the β-chain, respectively. “Tx” is short for “transaction”, and T and ∆T are preset

time in the contract. The procedure of the atomic swap is as follows (also see Nolan 2018).

Procedure of Atomic Swap:

(1) Alice initiates the atomic swap and generates a random secret s for verifying the hashlock.

(2) Alice creates two transactions:

1. Tx1: Pay 1 α-coin to Bα (the Bob’s wallet in the α-chain)1 if the secret s for H(s) is

verified and Tx1 is signed by Bob.

2. Tx2: Pay 1 α-coin from Tx1 to Aα, locked time T + ∆T , i.e., this transaction will be

effective after time T + ∆T .

Then Alice sends Tx2 to Bob.

(3) Bob signs Tx2 and returns to Alice. That is, Bob agrees and approves Tx2.

(4) Alice broadcasts Tx1 on the α-chain.

(5) Bob creates two transactions:

1. Tx3: Pay 1 β-coin to Aβ (the Alice’s wallet in the β-chain) if the secret s for H(s) is

verified and Tx3 is signed by Alice.

1In the transaction of cryptocurrency, one party usually sends cryptographic coins to an address created by the
other party in an output, and the other party links this address to his own cryptocurrency wallet. In this paper,
we ignore these technical details of recording transactions.
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2. Tx4: Pay 1 β-coin from Tx3 to Bβ, locked time T , i.e., this transaction will be effective

after time T .

Then Bob sends Tx4 to Alice.

(6) Alice signs Tx4 and returns to Bob. That is, Alice agrees and approves Tx4.

(7) Bob broadcasts Tx3 on the β-chain.

(8) Alice uses the secret s to unlock the coin locked in Tx3 before time T , and the secret s is

revealed to Bob.

(9) Bob uses the revealed secret s to unlock the coin locked in Tx1 before time T + ∆T .

(10) The atomic swap is finished: Alice gets 1 β-coin and Bob gets 1 α-coin.
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Figure 1: Atomic swap procedure

This procedure ignores the technical details of payments in the blockchain, and lists the sketches

of the transaction. Notice that Tx1 and Tx3 are key transactions for exchanging coins, and make
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the coins locked in contracts. Since Alice initiates the transaction, she has the secret s, and she

can use the secret s to unlock Tx3 to get 1 β-coin. At the same time, the secret s is revealed to

Bob. Then Bob can use the secret s to unlock Tx1 to get 1 α-coin, and the transaction is finished.

Tx2 and Tx4 are protective transactions to ensure that the coins can be refunded to Alice’s and

Bob’s wallets if the transaction falls through. Notice that only when Tx2 is signed by Bob, Alice

then broadcasts Tx1 on the α-chain, and other ledgers of the α-chain can record this transaction.

In other words, nothing happens on the α-chain before Tx2 is signed (what happens on β-chain

is the same). On the other hand, if the secret s is not revealed before time T , then the 1 β-coin

returns to Bob’s wallet, and the 1 α-coin returns to Alice’s wallet after extra time ∆T .

Remark 1. The timelock of Tx2 should be longer than the timelock of Tx4, i.e., ∆T should be a

proper positive number. For example, ∆T is usually set to be 24 hours in some contracts. This

plays a crucial role in preventing the occurrence of cheating. Since Alice initiates the transaction,

she has the secret s, and she can unlock Tx3 at any time before T (the β-coin will be refunded to

Bob’s wallet after T ). If the timelock of Tx2 is shorter than the timelock of Tx4, i.e., ∆T < 0,

Alice can use her secret s to unlock Tx1 just before T +∆T , and Bob may not have enough time to

use the revealed secret s to unlock Tx1 (since after T + ∆T , the α-coin will be refunded to Alice’s

wallet), so Alice may trick Bob by getting both 1 β-coin and 1 α-coin. In other words, the extra

time ∆T of the Tx2 is used to provide enough time for Bob to unlock Tx1.

3 New Procedure of Cross-chain Exchange

According to the procedure of atomic swap, Alice has a right, but not an obligation, to reveal the

secret s before T to get Bob’s 1 β-coin. More specifically, after Alice and Bob signing Tx4 and

Tx2, if Alice finds that the value of the α-coin is higher than the value of the β-coin, she may not

reveal the secret s, and let the transaction fall through. While if she finds that the value of the

α-coin is lower than the value of the β-coin, she may reveal the secret s immediately. However,

the β-coin is locked in Tx3, so Bob has no choice but to execute the transaction. That is, such a

procedure gives Alice a (financial) option and is unfair to Bob. Besides, the cryptocurrencies may

fluctuate significantly, which gives Alice a profitable arbitrage opportunity. So we cannot ignore

this optionality when using the atomic swap. Liu (2018) and Han et al. (2019) also point out the
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optionality embedded in the atomic swap, but they do not conduct an in-depth analysis of this

optionality. In this paper, we design a new procedure based on the atomic swap and provide a

general and in-depth quantitative analysis of the optionality.

Because of the optionality, Alice, the initiator of the cross-chain exchange, should pay a premium

p for this atomic swap. This premium p is used to compensate Bob’s obligation without the

corresponding right, i.e., the obligation that Bob has to execute the transaction once he signs Tx2.

In addition, in the cryptocurrency world, almost all the accounts and transactions are anonymous.

So that there is no credit binding, and anyone could cheat in the transaction. Thus, the design

of the contract should be very careful to ensure that no one can exploit some loopholes of the

exchange. Specifically, since there is no third-party intermediary in the cross-chain exchange,

synchronization is a critical consideration when we design the exchange procedure. Here the

synchronization means that the payment of the premium and the option contract should take

effect simultaneously. Otherwise, one of the parties may cheat in the transaction: If the payment

of the premium is sent to Bob first, Bob may not sign Tx2 (i.e., enter the option contract), and may

get the premium for free; If the option contract takes effect first, Alice may postpone or refuse to

pay the premium. In this paper, we design a new procedure that embeds the option into the atomic

swap; meanwhile, we use another HTLC to guarantee the synchronization of the payment and the

option contract. We summarize the procedure in Figure 2 and provide the specific procedure as

follows. We will show the method to determine the premium p in the next section.

Procedure of Atomic Swap with Premium:

(1) Alice initiates the exchange and generates two random secret s and s0 for verifying the

hashlocks.

(2) Alice creates two transactions:

1. Tx1: Pay 1 α-coin to Bα if the secret s for H(s) is verified and Tx1 is signed by Bob.

2. Tx2: Pay 1 α-coin from Tx1 to Aα, locked time T + ∆T , i.e., this transaction will be

effective after time T + ∆T .

Then Alice sends Tx2 to Bob.

(3) Bob signs Tx2 and returns to Alice.
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(4) Alice broadcasts Tx1 on the α-chain.

(5) Bob creates two transactions:

1. Tx3: Pay 1 β-coin to Aβ if the secret s for H(s) is verified and Tx3 is signed by Alice.

2. Tx4: Pay 1 β-coin from Tx3 to Bβ, locked time T , i.e., this transaction will be effective

after time T .

Then Bob sends Tx4 to Alice.

(6) Alice signs Tx4 and returns to Bob.

(7) Alice creates two transactions:

1. Tx5: Pay p α-coin to Bα if the secret s0 for H(s0) is verified and Tx5 is signed by Bob.

2. Tx6: Pay p α-coin to Aα, locked time T + ∆T .

Then Alice sends Tx6 to Bob.

(8) Bob signs Tx6 and returns to Alice.

(9) Alice broadcasts Tx5 on the α-chain.

(10) Bob creates Tx7: Broadcast Tx3 on the β-chain if the secret s0 for H(s0) is verified and

Tx7 is signed by Alice.

(11) Bob broadcasts Tx7 on the β-chain.

(12) Alice uses the secret s0 to unlock Tx7 to make Tx3 be broadcast on the β-chain, and the

secret s0 is revealed.

(13) Bob uses the revealed secret s0 to unlock the p α-coin locked in Tx5 before time T + ∆T .

(14) Alice uses the secret s to unlock the coin locked in Tx3 before time T , and the secret s is

revealed.

(15) Bob uses the revealed secret s to unlock the coin locked in Tx1 before time T + ∆T .

(16) The exchange is finished: Alice gets 1 β-coin, and Bob gets 1 α-coin and p α-coin premium.
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Figure 2: Atomic swap procedure with premium

Most of the steps are the same as the original atomic swap provided in Section 2 but adding

another line of transactions (dashed line on the α-chain in Figure 2). This line of transactions

aims to pay the premium p to Bob for exchanging the embedded option without a third-party

intermediary. First, Alice needs to create another two transactions Tx5 and Tx6. Tx5 pays the

premium p to Bob if the secret s0 is verified, and Tx6 ensures that the premium will be refunded

to Alice if Bob does not unlock Tx5. Bob does not unlock Tx5 also means that Bob does not get

the premium, so the option will not be effective. Next, Bob creates Tx7 to ensure that the right of

the option and the premium are exchanged fairly and no one tricks the other. Tx7 specifies that

Tx3 will be broadcast only after Alice using s0 to unlock Tx7. At that time, s0 is revealed to Bob
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and Bob can use s0 to unlock Tx5 to get the premium p. If Alice does not reveal s0, she cannot

make Tx3 be broadcast on the β-chain, so the option will not be effective. On the other hand,

such transactions can also prevent that Bob does not broadcast Tx3 (option is not effective) but

gets the premium.

Notice that, in this paper, the time T and ∆T are idealized as constants. However, in current

blockchain transactions (e.g., the bitcoin), the waiting time for the transaction to be added into the

blockchain fluctuates, and the transaction cost varies over time, especially during heavy traffics.

These technical problems are mainly caused by the low efficiency of the blockchain ledger, and may

be fixed as the development of new blockchain techniques. For example, we may use the lightning

network (Liu 2018), which can speed up the blockchain payment without worrying about waiting

time.

4 Premium Estimation

In this section, we consider how to estimate a proper premium p. Recall that the atomic swap gives

the initiator of the transaction (Alice) a right, but not an obligation, to exchange one cryptocur-

rency to another cryptocurrency from the counterparty (Bob), and the initiator can also choose

her favorite transaction time before T . So this option is an American exchange option (Hull 2012),

and T is the maturity time.

4.1 The model

We assume a complete probability space (Ω,F , P ) equipped with a natural filtration {Ft}t∈[0,T ].

Let Sα(t) and Sβ(t) be the price2 of the α-coin and β-coin at time t, respectively. We denote

by Z(t) = e−rt max(Sβ(t) − Sα(t), 0), t ∈ [0, T ] an adapted payoff process, where r is the risk-free

interest rate, and assume that Z(t) is Markovian. Then the fair premium (American exchange

option) is given by

p = max
0≤τ≤T

E [Z(τ)] = max
0≤τ≤T

E
[
e−rτ max(Sβ(τ)− Sα(τ), 0)

]
, (1)

2For ease of analysis, we assume that both coins have an explicit price just like stocks. We can also represent
the value of one coin by the other coin, i.e., we use one of the coins as numeraire.
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where τ is a stopping time adapted to the filtration generated by the processes of Z(t).

Notice that a cryptocurrency is not issued by a central bank or qualified commercial banks of a

country, and there are no well-traded bonds endorsed by governments, so we do not have a typical

risk-free interest rate like real currencies. To determine a risk-free interest rate, we provide two

simple ways. Firstly, we can use the cryptocurrency futures to extract the risk-free interest rate.

Based on the future price formula in Chapter 5 of Hull (2012), Vojtko and Padys̆ák (2020) pointed

out that the risk-free interest rate can be extracted by

r =
1

t2 − t1
(logP (t2)− logP (t1)) , (2)

where t1 < t2 and P (t1) and P (t2) are the bitcoin future prices at different delivery months.

Secondly, we may treat a cryptocurrency as a commodity. If there is no place that we can save

the cryptocurrency to earn interest, we may just set the risk-free interest rate to be zero, which is

the same as the setting of other papers that study the cryptocurrency derivatives, (see Perez 2018

and Hou et al. 2020). In numerical examples, we choose the first way to determine the risk-free

interest rate.

According to Margrabe (1976), if there are no dividends for Sα(t) and Sβ(t), the price of

American exchange option equals to the price of its European counterpart. Specifically, assume

that the price models are geometric Brownian motions, i.e.,

dSα(t)

Sα(t)
= µαdt+ σαdWα(t),

where µα and σα are the drift and volatility of α-coin, respectively, and Wα is a Brownian motion;

dSβ(t)

Sβ(t)
= µβdt+ σβdWβ(t),

where µβ and σβ are the drift and volatility of β-coin, respectively, and Wβ is another Brownian

motion. Let ρ denote the correlation between dWα(t) and dWβ(t).

Under the risk-neutral framework, we can change the measure to the risk-neutral measure, and
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we have µα = µβ = r. Then the closed-form formula of the exchange option price is given by

p = Sβ(0)N(d1)− Sα(0)N(d2), (3)

where

d1 =
log
(
Sβ(0)

Sα(0)

)
+ 1

2
σ2T

σ
√
T

, d2 = d1 − σ
√
T ,

and σ2 = σ2
β − 2σβσαρ+ σ2

α.

However, the non-dividend condition does not hold in the cryptocurrency world. Recently, there

are some discussion on how to earn cryptocurrency dividends in the cryptocurrency industry, and

some cryptocurrencies may have dividends through new business models. Staking is one of the

blockchain business models that allow token holders to obtain rewards or dividends through holding

funds in a cryptocurrency wallet to support the security and operations of a blockchain network

(Binance 2020). For example in Bankroll3, which is a decentralized finance network that provides

rewards through staking, the customer who deposits the cryptocurrency in the wallet of this

network can obtain the dividend after a certain amount of time. So if holding the cryptocurrency

can bring more benefits than holding the embedded option, then the option should be exercise early,

and we cannot use the closed-form formula of the European exchange option price to calculate the

premium. In addition, the price model of a cryptocurrency may be complex. According to Figure 5

in Section 6, the probability distribution of daily returns of bitcoin is leptokurtic and heavy-tailed,

so geometric Brownian motion is not a suitable model. And we may need more sophisticated

models, such as Lévy process models and jump-diffusion models, to describe the evolution of

the bitcoin and other cryptocurrencies prices. When sophisticated models are used, closed-form

pricing formulas are usually not available, and one may have to resort to Monte Carlo simulation

to estimate the premium.

In the next subsection, we provide a simulation-based algorithm, specifically, the least-squares

Monte Carlo method, to estimate the price of the American exchange option (i.e., the premium).

In the following, we consider a discrete-time valuation framework, i.e., the option can be only

exercised at a series of discrete-time points 0 = t0 < t1 ≤ t2 ≤ · · · ≤ tK = T , where K is the

3see https://bankroll.network
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number of discrete periods. In other words, we regard the American option as a Bermuda option.

At each time tk, Alice needs to determine whether to reveal the secret s immediately or continue

to hold until the next time point tk+1.

4.2 Least-squares Monte Carlo method

The least-squares Monte Carlo (LSM) method for pricing American-style options was first proposed

by Longstaff and Schwartz (2001), and then developed by other scholars, see Clément et al. (2002),

Stentoft (2004), Gerhold (2011), and Zanger (2013). We introduce the algorithm based on the

framework in Stentoft (2004). Recall that Z(t) = e−rt max (Sβ(t)− Sα(t), 0). Then, we define a

series of optimal stopping times {τ(tk)}Kk=0: τ(tK) = T,

τ(tk) = tk1{Z(tk)≥E[Z(τ(tk+1))|Ft]} + τ(tk+1)1{Z(tk)<E[Z(τ(tk+1))|Ft]}.
(4)

Notice that the conditional expectation in the indictor function is the expected value of the option

holding to the time tk+1 given the information of time tk. Let

F (tk) , F (Sα(tk), Sβ(tk)) = E [Z(τ(tk+1))|Ftk ]

= E
[
e−rτ(tk+1) max (Sβ(τ(tk+1))− Sα(τ(tk+1)), 0) |Ftk

]
= E

[
e−rτ(tk+1) max (Sβ(τ(tk+1))− Sα(τ(tk+1)), 0) |Sα(tk), Sβ(tk)

]
. (5)

The key idea of LSM is to use the cross-sectional information in the simulation sample paths

and least-squares regression to approximate the conditional expectations F (tk), k = 1, . . . , K − 1.

Specifically, we define a class of basis functions {φm(·, ·)}∞m=0, and according to Longstaff and

Schwartz (2001) and Stentoft (2004),

F (tk) =
∞∑
m=0

φm (Sα(tk), Sβ(tk)) am(tk), (6)

where {am(tk)}∞m=0 are corresponding coefficients of the basis functions. This representation is

based on the theory of Hilbert space, that is, any functions in the Hilbert space can be presented
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by a linear combination of countable basis vectors for this space (see Stentoft 2004). However, in

practice, we can only use a finite number of basis functions to approximate F (tk). Define FM(tk)

as

FM(tk) =
M−1∑
m=0

φm (Sα(tk), Sβ(tk)) am(tk),

so the stopping times are also approximated by

 τM(tK) = T,

τM(tk) = tk1{Z(tk)≥FM (tk)} + τM(tk+1)1{Z(tk)<FM (tk)}.

Suppose that we have N simulation sample paths of the α-coin and β-coin prices, which are

denoted by {Snα(tk), k = 0, 1, . . . , K}Nn=1 and {Snβ (tk), k = 0, 1, . . . , K}Nn=1, respectively. Here the

superscript n is used to denote the index of the simulation sample. Denote the estimates of the

coefficients at time tk as {âNm(tk)}M−1m=0 , k = 0, 1, . . . , K− 1, and we can use least-squares regression

to estimate these coefficients backward. The specific steps refer to Step 9 to Step 13 in Algorithm

1. After obtaining the estimates of the coefficients, the estimated conditional expectations and the

optimal stopping times along the nth simulation sample path (Snα(tk), S
n
β (tk)) are given by

F̂N,n
M (tk) =

M−1∑
m=0

φm
(
Snα(tk), S

n
β (tk)

)
âNm(tk), (7)

and  τ̂N,nM (tK) = T,

τ̂N,nM (tk) = tk1{Z(tk)≥F̂N,nM (tk)} + τ̂N,nM (tk+1)1{Z(tk)<F̂N,nM (tk)}.

Then, we generate another two sets of simulation paths {Slα(tk), k = 0, 1, . . . , K}Ll=1 and {Slβ(tk), k =

0, 1, . . . , K}Ll=1, respectively, and use (7) to estimate the optimal stopping times τ̂N,lM (tk) along the

new sample paths. At last, we calculate the sample mean 1/L
∑N

l=1 Z
l(τ̂N,lM (0)). Notice that we

can use different types of price models in LSM as long as we can simulate the sample paths of the

prices. Generally, we assume that the parameter sets of the price models for α-coin and β-coin are

Θα and Θβ, respectively. In the following algorithm, we assume the parameter sets of the price

models are given in advance. In Section 6, we will show how to use maximum likelihood estimation

to calibrate the model parameters. Then we summarize the whole procedure in Algorithm 1.
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Algorithm 1 LSM Algorithm

Input: The initial price Sα(0) and the model parameters Θα of α-coin, the initial price Sβ(0)
and the model parameters Θβ of β-coin, the maturity T , the number of time periods K, the
exercise time 0 = t0 < t1 ≤ t2 ≤ · · · ≤ tK = T , the number of simulation sample paths N for
approximating conditional expectation; the number of new simulation paths L to estimate p.

1: for n = 1 to N do
2: for k = 1 to K do
3: Generate sample path Snα(tk) based on Snα(tk−1);
4: Generate sample path Snβ (tk) based on Snβ (tk−1);

5: Set Zn(tk) = e−rtk max
(
Snβ (tk)− Snα(tk), 0

)
;

6: end for
7: end for
8: Let τ̂N,nM (tK) = T and F̂N,n

M (τ̂N,nM (tK)) = Zn(tK), for n = 1, 2, . . . , N ;
9: for k = K − 1, ..., 1 do

10: Generate basis functions {φm(Snα(tk), S
n
β (tk))}M−1m=0 , for n = 1, 2, . . . , N ;

11: Solve the least-squares problem to obtain the coefficients {âNm(tk)}M−1m=0

min
{aNm(tk)}M−1

m=0

N∑
n=1

(
M−1∑
m=0

φm(Snα(tk), S
n
β (tk))a

N
m(tk)− F̂N,n

M (τnM(tk+1))

)2

;

12: For n = 1, 2, . . . , N , let F̂N,n
M (tk) =

∑M−1
m=0 φm(Snα(tk), S

n
β (tk))â

N
m(tk), and

τ̂N,nM (tk) = tk1{Zn(tk)≥F̂N,nM (tk)} + τ̂N,nM (tk+1)1{Zn(tk)<F̂N,nM (tk)};

13: end for
14: for l = 1 to L do
15: for k = 1 to K do
16: Generate new sample path Slα(tk) based on Slα(tk−1);
17: Generate new sample path Slβ(tk) based on Slβ(tk−1);

18: Set Z l(tk) = e−rtk max
(
Slβ(tk)− Slα(tk), 0

)
;

19: end for
20: end for
21: Set τ̂N,lM (tK) = T and estimate τ̂N,lM (tk), k = K − 1, . . . , 1 as Step 12, for l = 1, 2, . . . , L;

22: Estimate the premium p̂N,LM = 1/L
∑L

l=1 Z
l(τ̂N,lM (0)).

Output: Return p̂N,LM .
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Remark 2. The methods to generate simulation paths of α-coin and β-coin (see Steps 3, 4, 16

and 17 in the algorithm) are adapted to their models under a risk-neutral framework. For example,

if the price model of α-coin is a geometric Brownian motion, then its model parameters are the

risk-free interest rate r, the dividend qα, and the volatility σα, i.e., Θα = (r, qα, σα). We then use

the Girsanov’s theorem (Musiela and Rutkowski 2005) to change the parameters from the physical

measure to the risk-neutral measure, i.e., changing the drift of the geometric Brownian motion as

r − qα and keeping volatility σα unchanged, and Steps 3 and 16 are given by

Snα(tk) = Snα(tk−1) exp
(

(r − qα)(tk − tk−1) + σα
√
tk − tk−1Zk

)
,

where Zk is a standard normal random variable.

Remark 3. If we assume that the volatility of α-coin or β-coin is 0, i.e., the price of one coin

increases with a constant rate, then this exchange option is an American call or put option. Thus,

the procedure in Figure 2 can be regarded as a way of decentralized American option trading.

According to the lemma in Stentoft (2004), we prove the convergence of Algorithm 1 and

summarize in Theorem 1. The assumptions and proof are provided in Appendix A.

Theorem 1. Under Assumptions 1-4, if M = M(N) is increasing in N such that M → ∞ and

M3/N → 0, then F̂N
M (tk) → F (tk) in probability, for k = 0, 1, . . . , K. In addition, let N(L) is

increasing in L such that N →∞ as L→∞, then

√
L(p̂N,LM − p)→ N(0, σ2),

where σ2 = Var(Z(τ(0))).

5 Cross-Chain Exchange with Margin Trading

Based on the procedure of the cross-chain exchange in this paper, once the transaction is estab-

lished, all the coins are locked in the contract, which may tie up the capital of both sides of the

transaction. To fix this issue, we consider a margin trading in the cross-chain exchange, i.e., both

sides of the transaction deposit a fraction of their funds in the contract, and then deposit full
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principal when the exchange is happening. In this section, we first provide a fair procedure of the

cross-chain exchange with both premium and margin, then provide an algorithm to estimate the

proper premium under this setting.

5.1 Procedure of cross-chain exchange with margin trading

In the procedure of cross-chain exchange with margin trading, we can use SIGHASH flags technique

(see Liu 2018), which allows each party in the contract to only sign parts of the contract and other

parts to be changed without their involvement. Specifically, we can use SIGHASH SINGLE mode

and SIGHASH ANYONECANPAY modifier to sign a transaction contract. The parties of the

transaction first deposit a fraction of their coins into the contract, and if one of the parties does

not deposit the remaining coins in time, such signatures allow the other party to withdraw its

own margin and get the counterparty’s margin. One may see Bitcoinwiki (2019c) for more details

about SIGHASH flags.

In this paper, we consider a fixed margin. Let mα and mβ denote the margin level of Alice

and Bob, respectively. Notice that 0 < mα,mβ ≤ 1, and the margin case degenerates to the

original case as in Section 3 when mα = mβ = 1. The whole procedure of the cross-chain exchange

with both premium and margin (see Figure 11 in Appendix B) and its description are provided

in Appendix B. Here we only list the differences from the cross-chain exchange with premium in

Section 3. That is, Step (2) and Step (5) are respectively replaced by

(2) Alice creates two transactions:

1. Tx1: Pay 1 α-coin to Bα (only deposit mα α-coin first in the contract, and deposit the

remaining coin before Tx1 unlocked by Bob) if the secret s is verified and Tx1 is signed

by Bob.

2. Tx2: Pay all the α-coin in Tx1 to Aα, locked time T + ∆T , and use the SIGHASH flag

signature.4

Then Alice sends Tx2 to Bob.

4Notice that Tx2 is signed by Bob with SIGHASH, and the amount of the coins in it is preset as the same as
the full principal in Tx1 in advance. If Alice does not deposit the remaining α-coin in Tx1, the coin in Tx2 cannot
reach the preset amount either, and such a signature allows Bob to switch the payee from Alice to himself, i.e., Bob
receives Alice’s margin since Alice defaults. The specific steps to achieve this need to construct new transactions
in the blockchains, which are beyond the scope of this paper, so we do not discuss these technical details in this
paper. Bob’s contract Tx4 functions similarly.
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(5) Bob creates two transactions:

1. Tx3: Pay 1 β-coin to Aβ (only deposit mβ β-coin first in the contract, and deposit the

remaining coin before Tx3 unlocked by Alice) if the secret s is verified and Tx3 is signed

by Alice.

2. Tx4: Pay all the β-coin from Tx3 to Bβ, locked time T , and use the SIGHASH flag

signature.

Then Bob sends Tx4 to Alice.

5.2 Premium estimation for margin trading

In the margin trading, if Bob finds that the price of his β-coin increases to a certain level, he may

take the initiative to default and will not deposit the whole principal in Tx3. In this situation,

Bob loses at most mβ β-coin. For Alice, her gain is at most mβ β-coin. Based on these facts, the

premium of the exchange with margin is different from (1) and given by

p′ = max
0≤τ≤T

E
[
min(e−rτ max(Sβ(τ)− Sα(τ), 0),mβSβ(τ))

]
. (8)

According to (1) and (8),

min(e−rτ max(Sβ(τ)− Sα(τ), 0),mβSβ(τ)) ≤ e−rτ max(Sβ(τ)− Sα(τ), 0),

so we have the following result.

Proposition 1. The premium of the cross-chain exchange with margin given by (8) is smaller

than the premium of the cross-exchange without margin given by (1). That is,

p′ ≤ p.

To estimate p′, we can still use the LSM, and the only difference is the payoff function

min(e−rt max(Sβ(t)− Sα(t), 0),mβSβ(t)).
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The whole algorithm is provided in Appendix C.

6 Numerical Experiments

In this section, we conduct a sequence of numerical experiments to study the performance of the

algorithms for estimating the premium with and without margin. We take the cross-chain exchange

between bitcoin (BTC) and litecoin (LTC) as an example, and use geometric Brownian motion

(GBM), variance gamma (VG) process, and Merton’s jump-diffusion (MJD) process to model their

prices. We collect the price data of bitcoin and litecoin at HitBTC5, and summarize them in a file

uploaded to Github (https://github.com/wangzinishu/pricing-cryptocurrency). We first

analyze the data and provide some summary statistics in Table 1, and show the daily prices and

returns of bitcoin and litecoin from February 1, 2019, to August 10, 2020, in Figures 3 and 4.
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Figure 3: Daily prices of bitcoin (left panel) and litecoin (right panel)

5HitBTC is a global cryptocurrencies platform, which founded in 2013 with a venture capital of 6 million
euros, supporting more than 100 cryptocurrencies transaction including BTC, ETH and LTC. Data from: https:

//cn.investing.com/crypto/currencies.
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Figure 4: Daily returns of bitcoin (left panel) and litecoin (right panel)

Remark 4. There is another line of research that models the underling prices as time-series models.

Based on the price data, we do further analysis and find that the conditional heteroscedasticity

exists in the bitcoin and litecoin data. So a multi-dimensional time-series model, e.g., a bivariate

GARCH model, may be more suitable. We will leave this problem for future research.

6.1 Calibration via maximum likelihood estimation

There are two critical issues in model parameter calibration. The first one is how to choose the

data set to do the calibration. In the traditional financial market, when we calibrate the model

parameters of an underlying asset to price options, we usually use the prices of another widely

traded options for this underlying asset as the data set. Because such price data contains the

expectation of the future price of this underlying asset under a risk-neutral world. However, for

the cryptocurrencies, we do not have well-traded bitcoin and litecoin options6, so we use the

historical price data to do the calibration. In addition, the maturity of the embedded option in

the atomic swap is quite small, so the recent historical data of bitcoin and litecoin may contain

some information for the expectation of the future price. We believe that the rapid development

of the cryptocurrency option markets will alleviate this issue. In the future, when we have enough

data for the cryptocurrency options, we can calibrate the model parameters under the risk-neutral

framework.

6Even though some bitcoin derivatives are traded in some exchanges, the transaction volume is relatively small,
and the quality of the data is not good.
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The second issue is how to determine a risk-free interest rate. As discussed in Section 4, we

use the bitcoin future prices in the Chicago Mercantile Exchange to calibrate the risk-free interest

rate via formula (2). Specifically, we use the settlement price of the futures on December 30th,

2020, to calculate the interest rate. There are four contracts with different delivery months, i.e.,

JAN 2021, FEB 2021, MAR 2021, and APR 2021, and the settlement prices are 27210, 27510,

27810, and 28100. So according to the formula above, we can calculate three daily interest rates,

0.036%, 0.039%, and 0.034%. Then we use the averaged value as the daily risk-free interest rate,

i.e., 0.036%. How to determine the risk-neutral model parameters as well as how to determine a

reasonable risk-free interest rate for cryptocurrencies are very important but difficult problems,

which are left for future research.

Based on the data, we use the maximum likelihood ratio method to calibrate the parameters in

BM7, VG and MJD. Specifically, we have the probability density functions of the process XBM(t),

XVG(t), and XMJD(t), which are given by

fBM(x, t;µ, σ) =
1√
2πσ

exp

(
−(x− µt)2

2σ2t

)
,

and

fVG(x, t;σ, ν, θ) =
2 exp (θx/σ2)

νt/ν
√

2πσΓ
(
t
ν

) ( x2

2σ2/ν + θ2

) t
2ν
− 1

4

K l
v
− 1

2

(
1

σ2

√
x2 (2σ2/v + θ2)

)
,

where K is the modified Bessel function of the second kind (see Madan et al. 1998), and

fMJD(x, t;µD, σD, λ, µJ , σJ) =
∞∑
k=0

[
pk(λt)fBM

(
x, 1;

(
µD −

σ2
D

2

)
t+ µJk, σ

2
Dt+ σ2

Jk

)]
.

Notice that fMJD(x, t;µD, σD, λ, µJ , σJ) involves an infinite number of summation. In the numerical

procedure, we use the first 100 terms to approximate the real probability density function fMJD.

We set t = 1 (one day), then we can construct log-likelihood functions for BM, VG, and MJD, and

obtain the model parameters, which are provided in Table 2.

In Section 6.2, the prices of bitcoin and litecoin are assumed to be GBMs. In Subsection 6.3,

the returns of bitcoin and litecoin are VG or MJD processes. VG process is a pure jump Lévy

7The price is assumed to be GBM, so the return is BM.
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process to model the return of asset prices, and it can better capture the characteristics of the daily

return of bitcoin and litecoin, such as leptokurtic and heavy-tail. MJD is another asset model that

can capture leptokurtic and heavy-tail of the returns, and it is suitable for sudden price changes

in very short periods.

Based on the real data, we provide the estimated probability density functions of daily returns

for BM, VG and MJD in Figure 5 and the Kullback-Leibler (KL) divergences between the estimated

kernel distribution and the estimated normal (GBM)/estimated VG/estimated MJD distribution

in Table 3. Both the figure and the table indicate that VG and MJD are superior to BM in

modeling the returns of bitcoin and litecoin.

Figure 5: Histogram and estimated densities for the daily returns of bitcoin (left panel) and litecoin

(right panel)

6.2 Example 1: Geometric Brownian motion

We first consider that the prices of bitcoin and litecoin are geometric Brownian motions (GBM).

We can use the Girsanov’s theorem to generate sample paths under the risk-neutral framework

(see Remark 2). Let Sα(0) = Sβ(0) = 1, ρ = 0.8124, the risk-free interest rate r = 0.00036, the

number of discrete periods K = 100, and T = 1. Let the dividends for both coins be 0. Then

we use the European exchange option price, which is given by (3), as a benchmark to study the

convergence of the premium. We compare three choices of basis functions:
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(i) The complete set of the second degree polynomials (denoted by d = 2)

(1, Sα, Sβ, S
2
α, SαSβ, S

2
β);

(ii) The complete set of the third degree polynomials (denoted by d = 3)

(1, Sα, Sβ, S
2
α, SαSβ, S

2
β, S

3
α, S

2
αSβ, SαS

2
β, S

3
β);

(iii) The complete set of the forth degree polynomials (denoted by d = 4)

(1, Sα, Sβ, S
2
α, SαSβ, S

2
β, S

3
α, S

2
αSβ, SαS

2
β, S

3
β, S

4
α, S

3
αSβ, S

2
αS

2
β, SαS

3
β, S

4
β).

Then we obtain the boxplots of premiums (see Figure 6) for different N based on 50 macro-

replications.
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Figure 6: Boxplots of premiums in Example 1 (left panel d = 2 ; middle panel d = 3; right panel

d = 4)

Figure 6 indicates that the LSM algorithm converges. Due to the discretization and the basis

function approximation of the conditional expectation, the estimated premium is low-biased to its

European counterpart. But when the complexity of the basis function is large, i.e., d is large, the

bias can be reduced. This result can also be concluded from Table 4, i.e., when the number of

simulation samples are large enough, using higher order polynomial as basis functions can have a

better accuracy.

We consider the effect of dividends. We fix the dividend of α-coin as 0.0005, and change the
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dividend of β-coin from 0.0005 to 0.0010. All the other parameters keep unchanged. Then we

obtain Figure 7, which indicates that the American-style premium is different from the European-

style if the dividend for α-coin and β-coin are different. That is, the dividend is indeed a critical

issue so that we cannot use the European-style exchange option price formula to determine the

premium in the atomic swap.
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Figure 7: Boxplots of premiums with non-zero dividends in Example 1

Next, we consider the effect of margin. Let mα = mβ = 0.1 and Sα(0) = 0.85 and Sβ(0) = 1.

The other parameters are the same as the case without margin. Notice that we do not have the

true premium under this case, so we use estimated premium with N = 5 × 106 and d = 4 as the

true premium (0.10001) to calculate RMSEs. The results are presented in Table 5, which also

indicates that the LSM algorithm works well. And when the number of simulation samples is large

enough, we should choose the complete set of higher degree polynomials as basis functions.

In addition, we study the relationship between the premium and the margin level. Let mα =

mβ = m = {0.02, 0.04, . . . , 0.30}, and use the basis function set d = 3. Then, we obtain Figure

8. As the increasing of the margin level m, the term e−rt max(Sβ(t)− Sα(t), 0) will dominate the

term mβSβ(t) in the minimizing operation of (8), so the premium should be closer and closer to

the price of the premium without margin, which has been shown in Figure 8. Based on the result,

we may conclude that if Alice wants to make a cross-chain exchange with Bob, the margin trading
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is a good choice since it costs less premium than that without margin.
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Figure 8: Boxplots of premiums with margin in Example 1

6.3 Example 2: Variance gamma and Merton’s jump-diffusion process

In this subsection, we consider that the returns of bitcoin and litecoin are VG and MJD processes,

respectively. Let K = 20, Sα(0) = Sβ(0) = 1, and dividends are both 0.0005. The samples of

the VG process can be simulated via a time-changed Brownian motion, and Appendix D provides

the way to simulate the price of VG under a risk-neutral measure. According to the simulation

method, we first use Gaussian copula to generate correlated Gamma random variables, and then

plug into the time-changed Brownian motion. The parameter in Gaussian copula is determined

by a stochastic root-finding procedure such that the correlation between Sα(t) and Sα(t) equals

ρ = 0.8124. The samples of the MJD can be simulated based on the geometric Brownian motion

with a compound Poisson process, and Appendix D provides the way to simulate the price of MJD

under a risk-neutral measure. To generate correlated MJD processes, we also use Gaussian copula

to generate correlated Poisson random variable, and then calculate the parameter in Gaussian

copula via a stochastic root-finding procedure such that the correlation between Sα(t) and Sα(t)

equals ρ = 0.8124. For more details about the simulation of VG, MJD, and other Lévy process

model, readers are referred to see Schoutens (2003) and Glasserman (2013).

The true premiums of VG and MJD are 0.00983 and 0.00899, respectively, which are calculated

with N = 5 × 106 and basis functions d = 4. Similar to the previous subsection, we obtain the
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boxplots of premiums (see Figure 9) for different N based on 50 macro-replications. Figure 9

indicates that the estimated premiums for both VG and MJD converge to the true premium.

Then, we consider the effect of margin. Let Sα(0) = 0.85 and Sβ(0) = 1, and other setting is the

same as last subsection, and we obtain Figure 10.
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Figure 9: Boxplots of premiums for VG (left panel) and MJD (right panel) in Example 2
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Figure 10: Boxplots of premiums with margin for VG (left panel) and MJD (right panel) in

Example 2
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7 Conclusions

In this paper, we propose fair procedures to conduct the cross-chain exchange of cryptocurrencies

under different settings. We first study the optionality embedded in the classical atomic swap,

which is one of the commonly used cross-chain exchange techniques, and propose a new cross-

chain exchange procedure to account for this optionality. We develop a least-squares Monte Carlo

algorithm to estimate the premium of the optionality, and prove the convergence of the algorithm.

Then, we study the cross-chain exchange with margin trading. An adapted procedure for ex-

change and an adapted algorithm to estimate the premium are provided in the margin trading

case. Numerical experiments demonstrate the good performance of the proposed algorithms un-

der geometric Brownian motion, variance gamma process, and Merton’s jump-diffusion process.

In future research, we have several research directions. Firstly, we may consider the multilateral

cross-chain exchange procedures, i.e., more than two parties in a cross-chain exchange, and study

its pricing algorithm. Secondly, we may consider the implementation issues and provide the ref-

erence scripts or packages of our procedures in some cryptocurrency platforms. Thirdly, we may

extend the application of atomic swap to other decentralized transactions of financial products,

and consider a “mark-to-market” margin trading regime.
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Table 1: Summary statistics of bitcoin and litecoin

Summary Statistics BTC LTC

Mean 0.0022 0.010

Median 0.0015 -0.0014

Standard Deviation 0.0419 0.0519

Standard Error 0.0018 0.0022

Excess Kurtosis 40.1325 16.4520

Skewness -2.9529 -1.0099

Minimum -0.5074 -0.4866

Maximum 0.1584 0.2609

Count 556 556

Correlation 0.8124
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Table 2: Model parameters of GBM and VG

GBM VG MJD

µ σ θ σ ν µD σD λ µJ σJ

BTC 0.0022 0.0419 0.0022 0.0370 1.4754 0.0018 0.0159 0.4578 0.0012 0.0515
LTC 0.0010 0.0519 0.0010 0.0478 1.0253 -0.0001 0.0278 0.2897 0.0052 0.0769

Table 3: KL divergence for bitcoin and litecoin

Bitcoin Litecoin

Normal 0.2031 0.1491
VG 0.0342 0.0283
MJD 0.0200 0.0201

Table 4: Estimated premiums without margin and RMSE in Example 1

N
d=2 d=3 d=4

p RMSE p RMSE p RMSE

1000 0.0116 0.00049 0.0115 0.00049 0.0113 0.00053
2000 0.0116 0.00037 0.0118 0.00048 0.0116 0.00039
4000 0.0115 0.00026 0.0118 0.00030 0.0118 0.00030
8000 0.0115 0.00021 0.0119 0.00019 0.0119 0.00023
16000 0.0115 0.00015 0.0118 0.00015 0.0119 0.00014
32000 0.0114 0.00009 0.0118 0.00009 0.0118 0.00011
64000 0.0114 0.00007 0.0118 0.00008 0.0119 0.00008
128000 0.0115 0.00005 0.0118 0.00005 0.0119 0.00005

Table 5: Estimated premiums with margin and RMSE in Example 1

N
d=2 d=3 d=4

p RMSE p RMSE p RMSE

1000 0.09998 10.9E-05 0.10002 9.31E-05 0.10000 9.22E-05
2000 0.10003 8.14E-05 0.10001 6.27E-05 0.10001 5.63E-05
4000 0.10002 4.80E-05 0.10000 3.95E-05 0.10000 4.04E-05
8000 0.10000 3.25E-05 0.10001 2.98E-05 0.10001 2.87E-05
16000 0.10002 2.02E-05 0.10001 2.01E-05 0.10001 1.99E-05
32000 0.10001 1.56E-05 0.10001 1.58E-05 0.10001 1.30E-05
64000 0.10001 1.29E-05 0.10001 1.21E-05 0.10001 1.17E-05
128000 0.10001 1.02E-05 0.10001 0.95E-05 0.10001 0.91E-05
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