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Abstract

Traditionally, simulation has been used as a tool of design to estimate, compare and opti-

mize the performance of different system designs. It is rarely used in making real-time deci-

sions due to the long computation delay of executing simulation models. However, with the

fast growth of computing capability, we have observed more and more works on reusing sim-

ulation efforts for repeated experiments with the help of data analytics tools, and the target

of these works is to solve real-time decision problems. In this paper, we distill the important

features of these works and summarize a new simulation framework, called offline-simulation-

online-application (OSOA) framework, which treats simulation as a data generator, applies

state-of-the-art analytics tools to build predictive models, and then uses the predictive models

for real-time applications. In this paper, we illustrate how to apply the OSOA framework on

estimation, ranking and selection and simulation optimization, and provide a prospect of this

new framework.
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1 Introduction

Simulation is a commonly used tool of design to estimate, compare and optimize the perfor-

mance of complex systems. For instance, in the area of finance, simulation is used to estimate

the prices and sensitivities of complex derivatives and the risk measures of large portfolios

(Glasserman 2003 for a survey); in the area of healthcare, simulation is used to compare

different medical treatments (Dunnett 1984, Jun and Jacobson 1999); and in the area of

transportation, simulation is used to optimize the traffic system designs (Daganzo 1997, Oso-

rio and Bierlaire 2013). These problems are in general offline, that is, the input parameters of

the simulation models are known when conducting the simulation experiments and sufficient

time is often available to run the experiments before making decisions. As simulation models

often take a large amount of time to run, especially when the systems are complex and the

solution space is large, traditionally, much of the research attention in the stochastic simu-

lation area is focused on the improvement of the efficiency, for instance, designing variance

reduction techniques to speed up estimation (Glasserman et al. 1999, Dingeç and Hörmann

2012, Jiang et al. 2016a), using parallel computing to handle large-scale ranking and selection

(R&S) (Luo et al. 2015, Ni et al. 2017), and developing fast search algorithms to conduct

simulation optimization (SO) (see Fu 2015 for a survey).

In practice, however, many decisions need to be made in real time (or near real time)

based on the parameters observed at the time and the available time is typically not enough

to conduct a full-scale simulation study. We call them online problems. For instance, in the

area of finance, portfolio risk measures often need to be estimated dynamically based on the

current values of the underlying risk factors. As an example, the famous 4:15 report of J.

P. Morgan requires consolidating the risks of all trading desks based on the closing values

of the underlying factors, available within 15 minutes after the market closes everyday, and

the company uses it to decide whether the risk is under control (Jorion 2006). In the area of
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healthcare, medical treatments sometimes need to be selected almost in real time when the

test results of the patients are revealed. The doctors may not have the time or the capability

to conduct a simulation study to compare different treatments (Choi et al. 2014). In the area

of transportation, self-driving cars need to make the manoeuvre decisions in real time based

on the surrounding objects and there is no time to run a simulation study (Santana and

Hotz 2016). In these situations, simulation is typically not used due to the long execution

time. Instead, simple models based on closed-form approximations or simple rules based on

experience are often used. These simple models and simple rules are fast to use but may not

lead to the best decisions.

However, with the fast growth of computing capability and with more and more data ana-

lytics tools, there are more and more recent works considering how to use complex simulation

models and experiments to solve real-time decision problems. In these works, simulation

efforts are reused and data analytics tools are applied to build metamodels or to accelerate

decision procedures, see Hannah et al. (2010), Nelson (2016), Jiang et al. (2016b), Lin and

Nelson (2016), Ouyang and Nelson (2017), Pearce and Branke (2017), Jiang et al. (2019a),

Jiang et al. (2019b), Shen et al. (2019), Li et al. (2019), Jin et al. (2019) for instance. In

these works, extensive simulation experiments are conducted before the real-time decision

problems come, and predictive models or surrogate models are constructed to be used in

real-time decision problems. In this paper we summarize these works to a unified framework,

which uses the offline simulation results on applications where online decisions need to be

made. We call it the offline-simulation-online-application (OSOA) framework. The key to

linking the offline simulation and online application are predictive models.

To understand the importance of predictive models, we first introduce the concept of co-

variates. In many online applications, there are parameters that are only revealed at the spot.

The examples include the values of the underlying risk factors in financial risk measurement,

the characteristics of the patient in medical treatment selection, and the sizes, locations and

speeds of the surrounding objects in self-driving car manoeuvre. These parameters are not

exactly known when running simulation experiments, but the possible values (and sometimes

ranges) that they may take are typically known. We call these parameters covariates. The
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OSOA framework is divided into two stages. In the offline simulation stage, we run experi-

ments at different values of the covariates and build predictive models so that the performance

of the models may be predicted once the values of the covariates are observed. In the online

application stage, we use the predictive models in online problems to predict the performance

of a decision and to compare and optimize the performance of different decision choices. The

predictive models are often closed-form expressions that may be used as analytical formu-

lae of important system performances. For example, the formula of the waiting time for a

complex queueing system is usually unavailable, so we can approximate the formula by a

predictive model based on a large amount of simulation experiments. Then we can make

real-time decisions using the predictive model. In fact, predictive models have been used

in the simulation area. In approximate dynamic programming (Powell 2009), for instance,

regression models are often used to approximate the value function to overcome the “curse

of dimensionality”. In this paper, we consider three types of problems, namely “estimation

with covariates”, “R&S with covariates” and “SO with covariates”. In all three types of prob-

lems, we emphasize the existence of the covariates to differentiate with the classical offline

estimation, R&S and SO problems. Notice that there are some common characteristics for

these three types of problems: (i) all these problems contain covariates; (ii) the goals of all

these problems are to solve online problems rather than the static design problems; (iii) all

these problems need to apply data mining/machine learning tools to simulation data to build

predictive models. Therefore, we may unify these problems under the OSOA framework.

In the OSOA framework, the simulation models are essentially data generators. One may

use parallel computing environments to generate multiple replications of simulation results on

a well-chosen set of values of the covariates. Then, state-of-the-art data mining/analytics tools

may be used to construct the predictive models, which may be used for online applications.

This view of simulation models as (big) data generators is also in line with the concept of

“simulation analytics”, recently proposed by Nelson (2016). The main idea of the simulation

analytics approach is to treat the simulation model as a generator of multiple replications of

system dynamics over time and to apply data analytics tools to mine the data and to estimate

conditional statements. Indeed, one may view the OSOA framework as a way of realizing the
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concept of simulation analytics. Similar to simulation analytics, the OSOA framework gets

benefit from the recent development of computer technologies (such as cloud computing and

parallel computing) and the recent development of data analytics tools. The new computer

technologies allow the users to conduct extensive simulation experiments and to store the

data, and the new data analytics tools provide the users a lot of sophisticated predictive

models.

Reusing simulation experiments have also been considered by other simulation researchers

in recent years. Liu et al. (2010) proposed to run the simulation experiments to construct a

good database and use it for future estimations of derivative prices. They call it “simulation

on demand”. Rosenbaum and Staum (2015) further developed this idea into database Monte

Carlo simulation that uses the database to construct control variates to reduce the variances

of the estimators. Feng and Staum (2017) proposed the concept of green simulation that uses

saved simulation data as a complementary source to new simulation data by employing a

change of probability measures. These works are similar to the OSOA framework. However,

the difference is that they emphasize on reusing the simulation data on new problems, while

our goal is to build predictive models so that we no longer need the simulation data and may

solve online problems.

The rest of the paper is organized as follow. We first discuss the OSOA framework in

Section 2. In Sections 3 to 5, we consider three types of OSOA problems, estimation with

covariates, R&S with covariates and SO with covariates, respectively. We then speculate the

future of OSOA research and propose a few problems for future studies in Section 6.

2 The OSOA framework

Recall that in many real-time applications, simple models (often with closed-form expressions)

are often used. In finance risk management, for example, closed-form pricing models (e.g., the

famous Black-Scholes formula) are typically used despite their known deficiencies. Simulation

models are typically more accurate, because they can capture more details. But they are

difficult to use in real time due to the long computation time. The OSOA framework fills
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the gap, and the key is the predictive model (see Figure 1). We use offline simulation to

run a large amount of simulation experiments at different combinations of covariate values

to build the predictive model that is nearly as accurate as the simulation model itself but

has closed-form expressions that may be evaluated in real time. Once the predictive model

is built, it acts like the simple models in many real-time applications. It may be used in real

time once the values of the covariates are observed. In this way, we combine the benefits of

both, the accuracy of simulation models and the speed of simple models. Notice that Figure

1 only shows a general OSOA framework, and there are some other variants. For example,

predictive models may be built repeatedly in some problems. In addition, the distinction

between offline simulation and online application is blurred in some near real-time problems.

We may have time to conduct simulation experiments before making decision, so we can

combine the simulation results and the predictive models together to further enhance the

decision, and to accumulate the additional data for further use. Overall, the OSOA should

be adapted based on the specific problems.

Figure 1: A general OSOA framework
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2.1 Offline-Simulation Stage

A simple way to look at the offline-simulation stage is to think it as a surface-fitting stage.

The goal of the stage is indeed to fit a surface that may be used to predict once the the

covariates are observed. Therefore, many of the state-of-the-art analytics tools may be used

(see, for instance, Hastie et al. 2011). The critical issue of surface fitting is typically how

to control the bias-variance tradeoff to improve the prediction accuracy. Given the limit on

the computation time in most practical applications, the data that may be collected through

simulation experiments are often limited. Therefore, the dimension (or at least the effective

dimension) of the covariates cannot be too high. Otherwise, we typically do not have the

sufficient data to construct an accurate predictive model to make real-time decisions. One

may view this as a limitation of the OSOA framework.

In most analytics applications, the data are given and a surface is fitted to achieve the best

accuracy, see Hastie et al. (2011) and Tan et al. (2018) for surveys. In the OSOA framework,

however, the data collection process is more active and a lot can be done to control the

accuracy of the fitted surface. This is often called metamodeling to emphasize the goal is

to build a metamodel (i.e., a surface) of a simulation model (see, for instance, Barton and

Meckesheimer 2006 for more details on simulation metamodeling). In metamodeling, the

critical issue is how to design the experiments, i.e., how to choose the design points (i.e.,

the values of the covariates) to conduct simulation experiments and the sample size at each

design point. Moreover, the experimental design may be conducted in a sequential manner

to further improve the prediction accuracy given the same amount of computational budget.

These metamodeling tools may certainly be used in the OSOA framework as well.

However, experimental designs in the OSOA framework can sometimes go beyond those in

simulation metamodeling problems. The following are some examples encountered in recent

works:

1. In simulation metamodeling problems, simulation models are treated as black boxes. In

many of the OSOA problems, however, one may have a simple model that may be less

accurate than the simulation model but computationally much easier to evaluate. For
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instance, in queueing systems, besides the complicated queueing models like the G/G/m

queue, one may also have simple models with closed-form expressions of system perfor-

mances, such as the M/M/m queue. These simple models are typically less accurate

locally, but they often capture the global trend of the surface. Therefore, incorporating

these simple models in the metamodeling may be beneficial, and it affects the design of

experiments. Shen et al. (2018) considered how to incorporate simple models in meta-

modeling to improve the prediction accuracy and to speed up the optimization process.

Specifically, the simple models (also called stylized models), which contain useful infor-

mation about the shape of the system performance, are incorporated into a stochastic

kriging approach by replacing the constant term.

2. In simulation metamodeling problems, only a single metamodel needs to be built, and

the accuracy of the metamodel is in the first place. In some of the OSOA problems,

however, one may need to build multiple metamodels. Besides the accuracy of the

multiple metamodels, we also need to maintain a certain relationship between these

metamodels. In derivative pricing, for instance, one needs both the surface of the

price and the surfaces of the sensitivities (known as the Greeks). An interesting and

also important problem is how to build the metamodels so that they are consistent in

differentiation, i.e., the gradient of the price surface matches the values of the sensitivity

surfaces. Jiang et al. (2019b) considered this problem and suggested to use stochastic

co-kriging to solve the problem.

3. In simulation metamodeling problems, metamodels are evaluated based either on their

fitting quality, e.g., the integrated mean squared error, or their prediction accuracy.

In the OSOA framework, however, metamodels are the bridge to real-time decision

makings. Therefore, the fitting quality may not be the only criterion of metamodeling,

and how to best support the decisions may become more important. When comparing

two alternatives, for instance, metamodels may need to be more accurate in the regions

(of covariates) where the two alternatives have similar performances, but less accurate

in regions where the two alternatives are significantly different. We will discuss more

of this issue in Sections 4 and 5 when we consider R&S with covariates and SO with
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covariates.

Based on these examples, we can see that OSOA problems often bring unique features that

allow innovative experimental design and metamodeling. We believe a lot may be done

in the offline-simulation stage so that the simulation experiments may be conducted in an

efficient way and the metamodeling or machine learning techniques can be applied to build

metamodels to better support the online applications.

2.2 Online-Application Stage

Once the predictive models are given, the online applications become quite standard. When

the values of the covariates are observed, the predictive models may be evaluated or optimized

using very little computational time to support real-time decision makings.

However, OSOA also brings some new features compared to typical online problems. In

the OSOA framework, the predictive models are mainly estimated in the offline-simulation

stage using the simulation data collected at a set of design points. As the time goes by, one

may also have time to add more experiments in some cases. The following are two examples:

1. In financial risk management, risk needs to be evaluated and monitored continuously

during the trading hours. When the market is closed in the evenings and weekends, more

simulation experiments may be run given the latest market closing prices. Therefore,

over the time, we accumulate simulation data started from different time points and

different initial states. How to combine these data to build a predictive model becomes

an interesting problem.

2. Notice that the observed values of the covariates are rarely a point in the set of design

points. Therefore, bias is often inevitable. In some other applications, e.g., personalized

medical treatment, there is often some time for some additional simulation experiments

after the covariates are observed, and these new data are typically unbiased observations

of the performance given the values of the covariates. It is an interesting problem to

consider how to reduce both the bias and the variance of the predictive value by using

these additional simulation data.
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2.3 Three Types of OSOA Problems

In this paper, we draw mostly from the recent research works to discuss three types of OSOA

problems, estimation with covariates, R&S with covariates and SO with covariates. Let

f(θ,x) be a system performance or an objective function, where θ denotes decision variables

and x denotes covariates. Usually, we cannot obtain f(θ,x) directly, instead, we can only

observe its unbiased random sample F (Y,θ,x), where Y represents the randomness. That

is,

f(θ,x) = E[F (Y,θ,x)].

In estimation with covariates, θ = θ0 is usually fixed, and we are interested in estimating

f(x) := f(θ0,x). In R&S with covariates and SO with covariates, we would like to obtain

the optimal solution for different covariates (scenarios)

θ∗(x) = arg max
θ∈Θ

f(θ,x). (1)

For R&S with covariates, Θ = {θ1,θ2, . . . ,θk} are different alternatives. For SO with covari-

ates, Θ ⊆ Zd (discrete optimization) or Θ ⊆ <d (continuous optimization), where Zd denotes

all d-dimensional vectors with integer components.

Notice that, if we regard the covariates x as random elements (denote as X), then by

Jensen’s Inequality,

max
θ∈Θ

E[f(θ,X))] ≤ E[max
θ∈Θ

f(θ,X))].

Therefore, for both R&S with covariates and SO with covariates, the formulation with covari-

ates (i.e., the online problems) on average outperforms the formulation where the covariates

are observable after the optimal decision is made (i.e., the offline problems).

In the rest of this paper, we will also demonstrate how to link the offline-simulation stage

and the online-application stage, and we will also discuss the experimental design issues and

the metamodeling techniques based on the unique features of the applications. Notice that

the main difference between the OSOA and the existing simulation approaches is the use of

predictive models. In the OSOA framework, the predictive models are constructed in the
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offline-simulation stage and used in the online-application stage in real time. While most

existing simulation approaches focus on how to design a good system/make a good decision

without time limit or with a relatively enough time. To make the key idea more clear,

we provide a brief description of the offline simulation stage, predictive model, and online

application stage for the three types of problems in Table 1.

Table 1: A brief description of OSOA for three types of problems

Offline simulation Predictive model Online application

Estimation

with covariates

Estimate performance

of system based on

different covariate values

Build surface of

performance of system

w.r.t. the covariates

Evaluate system

performance when the

covariates are observed

R&S

with covariates

Solve R&S based on

different covariate values

Build surface of performance

of each alternative

w.r.t. the covariates

Select best alternative

when the covariates

are observed

SO

with covariates

Solve optimization

problems based on

different covariate values

Build surface of objective

function or optimal

solution w.r.t. the covariates

Provide optimal

solution when the

covariates are observed

3 Estimation with Covariates

The first type of OSOA problems we considered is the estimation with covariates. In this

type of problems, we derive the functional relationships among variables of the systems, such

as model parameters, simulation outputs, system states, etc. In this section, we discuss the

estimation with covariates via two aspects. In the first aspect, we consider the performance

estimation, where the classical simulation is usually used. Particularly, we consider how to

evaluate the performance of stochastic systems with covariates via the OSOA framework. In

the second aspect, we consider the input uncertainty and metamodeling, which are hot topics

in the simulation area. Some of the approaches to handle input uncertainty and metamodeling

can be included in the OSOA framework.
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3.1 Performance estimation with covariates

Simulation is widely used to estimate the performance of stochastic systems. For example,

the steady-state waiting time of a queueing system can be estimated via a single long run

simulation; the financial risk measures of a portfolio including complex derivatives can be

estimated via a nested simulation. However, such estimations are all offline. By the OSOA

framework, we can build the predictive models to evaluate the performance of stochastic

systems with covariates in real time.

Notice that the performance of stochastic systems is usually a quantity, especially an

expectation. In this section, we use the expectation expression of the performance as an

example. Let Y be random variables in a stochastic system, and F (·) be a sample performance

function of the system. The performance of the system of interest can be expressed by

E[F (Y)]. By applying OSOA, we can estimate the performance with covariates, where we

use F (Y,x) (we drop off θ0 here) to denote a sample performance function of the system

with covariates x. That is, we derive a functional relationship between the system variables

and the simulation outputs, which can be expressed by E[F (Y,x)] with the expectation with

respect to Y. It can be interpreted as when we observe new states or new values of covariates

in the system, how will be the performance of the system. Notice that if the covariates are

assumed to be random variables, the estimation with covariates turns to be a conditional

estimation, i.e., E[F (Y)|X = x], where X are the covariates in the system with the observed

values x. We will provide an example to show the practical applications of performance

estimation with covariates.

Jiang et al. (2019a) considered a performance estimation with covariates problem in

financial engineering, specifically, estimating the conditional financial risk measures. Finan-

cial risk measures are important indicators of risk of financial portfolios and even stability

of financial institutions. Simulation studies are often used to estimate portfolio risk mea-

sures, and they often produce accurate estimates of risk measures, but very time consuming,

especially when portfolios consist of multiple derivative products whose prices also need to

be determined by additional simulation efforts (see Hong et al. 2014 for a survey). Nearly

all estimation methods proposed in the simulation literature are designed under the offline
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framework. In practice, however, portfolio risk measures are often needed to be estimated

in real time as the current values of the underlying risk factors change; think the famous

4:15 report of J. P. Morgan. Therefore, the OSOA framework can be applied to estimate the

conditional risk measures to do online risk monitoring.

The risk measures considered in Jiang et al. (2019a) is the exceedance probability, which

expresses as an expectation

p = Pr {L(ST ) ≥ l0} = E [1{L(ST ) ≥ l0}] ,

where {St}t∈[0,T ] with St , (S1,t, S2,t, . . . , Sm,t) represents the underlying risk factors in a

portfolio, and each coordinate Si,t, i = 1, 2, . . . ,m, is driven by a stochastic process. L(·) is

the loss function of the portfolio, and l0 is a preset threshold. Given the initial value of the

stochastic processes S0 and some other parameters in the portfolio, the quantity p can be

estimated via a nested simulation.

In order to monitor risk online, the conditional exceedance probability is required, i.e.,

p(s) = E [1{L(ST ) ≥ l0}|St = s] ,

where St = s means observing a realization of underlying risk factors at time t ∈ (0, T ). Jiang

et al. (2019a) proposed to use logistic models as the predictive model in OSOA to estimate

the conditional exceedance probability. The logistic regression model is given by

log

(
p(St)

1− p(St)

)
= β(t)>X(St),

where X(·) : <m → <d denotes a basis function mapping to make the model more flexible,

and β(t) = (β1(t), . . . , βd(t))> is the vector of coefficients. When the portfolio is formed,

a thorough nested simulation study is typically conducted to analyze the risk profile of the

portfolio. After the simulation study, we have n simulated sample paths of the underlying

risk factors S1(t),S2(t), . . . ,Sn(t), 0 ≤ t ≤ T , and we can also easily calculate the portfo-

lio loss at time T based on the simulated realizations of the underlyings, denoted them as
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L1(T ), L2(T ), . . . , Ln(T ). Then, the coefficient β(t) can be estimated via maximum likeli-

hood estimation. Jiang et al. (2019a) showed that the conditional exceedance probability

estimator is consistent and has a central limit theorem under some mild conditions.

Furthermore, the risk managers sometimes need to know whether the portfolio is safe or

not in real time, that is, the online risk classification problem (see Lucas and Klaassen 2006

for example). In this problem, a threshold α is given, and if the exceedance probability p(x)

is less than or equal to α, the portfolio is in the safe zone. Otherwise, the portfolio is in the

dangerous zone. In practice, p(x) is unknown and p̂(x) is its estimate. Let I and Î denote

the safe/dangerous indicators under the true and estimated probabilities, respectively, i.e.,

I =


1 if p(x) ≤ α

0 if p(x)) > α

, Î =


1 if p̂(x) ≤ α

0 if p̂(x) > α

.

Then, Î 6= I denotes a misclassification. Jiang et al. (2019a) showed that the probability

of misclassification, i.e., Pr{Î 6= I}, converges exponentially fast as n → ∞, under some

mild conditions. In addition, by introducing the lasso, perturbation technique, performance

of the conditional exceedance probability estimator and classifier can be enhanced. Specifi-

cally, Jiang et al. (2019a) provided two ways to utilize the additional simulation data. One

is combing the estimators derived from the additional data set and the original data set sep-

arately, and the other is to combine these two data sets together. One may refer to Jiang

et al. (2019a) for more details.

The above example introduces the application of the OSOA framework in financial engi-

neering. In other areas, the OSOA framework can be also applied to evaluate performances

of stochastic systems with covariates. For example in queueing, one may be interested in the

waiting time of a customer to a service system conditional on a particular event occurring at

a particular time. Lin and Nelson (2016) proposed to retain the simulation samples in offline,

and apply k nearest neighborhood method to build a predictive model for online application.

Ouyang and Nelson (2017) considered a two-step method to predict the probability that the

queueing system state belongs to a certain subset. Li et al. (2019) proposed to use stochastic

kriging prediction model in the offline-simulation stage and studied the convergence rate of
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the prediction error with the number of covariate points sampled. By applying OSOA frame-

work, the traditional performance estimation problem can be extended to the online setting,

which makes the performance more practical.

3.2 Input Uncertainty and Metamodeling

Estimation with covariates may have a general scope including input uncertainty and meta-

modeling. Input uncertainty refers to the uncertainty that is derived from using estimated

input models (parameters), which are the probability distributions used to drive the simu-

lation, and they are specified from real-world data or the subjective experience; think in-

terarrival times and service times in queueing; drifts and volatilities of underlying assets in

option pricing. There are various methods proposed to quantify the uncertainty due to input

models, and the methods can be basically divided into frequentist and Bayesian approaches,

see Barton (2012) and Lam (2016) for surveys. For some recent works, interested readers

may see Xie et al. (2014), Song and Nelson (2015), Barton et al. (2018), etc. We use the same

notation in Xie et al. (2014), and let zm denote the real-world data, where m is the data size.

For fixed input model parameter θ, µ(θ) is the true simulation mean response.

In frequentist approaches, a point estimate of the input model parameters θ̂ is estimated

from zm. Since these data are only the realizations of the true input models distributions,

the uncertainty is quantified by its sampling distribution. The input uncertainty is then

propagated to the simulation output. If µ(θ) is known, the input uncertainty can be assessed

easily via some functional transformations, and the confidence interval (CI) of simulation

outputs can be constructed accounting for the input uncertainty. However, µ(·) is usually

unknown, so the direct simulation or metamodeling is needed to approximate µ(·), and the

input uncertainty is difficult to be assessed in the simulation output.

In Bayesian approaches, a prior distribution of input model parameters πΘ(θ) is first

assumed, and the data zm are applied to update the posterior distribution via pΘ(θ|zm) ∝

πΘ(θ)·pzm(zm|θ), where pzm is assumed likelihood function of zm given θ. Similar to frequen-

tist approaches, if µ(θ) is known, the propagation of input uncertainty can be tracked and

CI of simulation outputs can be constructed to assess the risk of input uncertainty. If µ(θ) is
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unknown, direct simulation or metamodeling is also needed to learn the response surface of

µ(θ). For example, Xie et al. (2014) proposed a Gaussian process model to learn µ(θ), and

use it in the posterior distribution of simulation output response.

Notice that, no matter in frequentist approaches or Bayesian approaches, if the surface

of µ(θ) is unknown, we need to learn it from the simulation data, which has the same spirit

with the OSOA framework, that is, we learn the the true simulation mean response offline via

some metamodeling tools, like Gaussian process regression (see Ankenman et al. 2010), and

use the learned response surface to assess input uncertainty online. As we have mentioned in

Section 2, metamodeling tools are essential in the offline-simulation stage, and using a proper

metamodeling method will bring a significant benefit in solving the online problem.

Estimation with covariates is an important problem. In many applications, the conditional

expected functions are critical to online decision makings. Besides, it is also the building block

of other types of methods, e.g., approximate dynamic programming (Powell 2011). There are

many research issues worthy of studying in estimation with covariates. For example, we

may consider how to deal with the misspecification of models (both simulation models and

predictive models), and how to combine the additional simulation data with the original data

to improve the accuracy of estimations more efficiently.

4 Ranking and Selection with Covariates

In this section, we consider the second type of OSOA problems, ranking and selection (R&S)

with covariates. R&S is a kind of discrete simulation optimization problem, which identifies

the best one from a finite set of competing alternatives. The problem can be written by

i∗ = arg max
i∈S

{µi = E[Yi]},

where S = {1, . . . , k} is a finite set of alternatives indexed by i. For each alternative i,

its performance µi cannot be computed exactly, but can be estimated using output from a

stochastic simulation represented by Yi. For example in inventory management, S may be
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different inventory policies, µi is the expected average profit of each policy, and Yi is the

realization of each simulation on the ith policy. The aim of the management is to find the

policy with the largest expected profit. For R&S procedures and applications, see Kim and

Nelson (2006), Kim and Nelson (2007), and Hong et al. (2015) for surveys.

In classical R&S procedures, all the model parameters are preset, and the performances

of all the alternatives are usually unconditional. However, in some applications, some model

parameters cannot be determined in advance, and can only be observed online, that is, there

are covariates in the stochastic systems. At the same time, the decision should be made im-

mediately. For example, online advertisements or promotions need to be pushed to consumers

based on their purchasing behaviors and personal information like income and address. After

obtaining the information (covariates), the chosen advertisement should be presented to the

consumers on their screens immediately. In this setting, the performance of an alternative is

no longer a quantity, and varies as a function of the covariates.

Shen et al. (2019) proposed new procedures to solve the R&S with covariates under the

OSOA framework. Distinct from the classical setting, they assumed that the performance

of each alternative depends on X = (X1, . . . , Xd)> ∈ X ⊆ <d. µi(X) denotes the mean

performance of alternative i. For each i = 1, . . . , k and l = 1, 2, . . ., Yil(X) denotes the

lth sample from alternative i. The goal is to select the alternative with the largest mean

performance conditionally on X = x,1

i∗(x) = arg max
i∈S

{µi(X)|X = x}.

Notice that when X changes, the previous best alternative is not necessarily the current

best alternative, so it needs to know the surfaces of performances of alternatives with respect

to X. Shen et al. (2019) assumed a linear model in which µi(X) is linear in X and Yi,l(X) is

1R&S with covariates can be formulated as (1). Here we use another formulation in line with the classical R&S.
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unbiased, that is, for each i = 1, . . . , k and l = 1, 2, . . ., conditionally on X = x,

µi(x) = x>βi,

Yil(x) = µi(x) + εil(x),

where βi ∈ <d is a vector of unknown coefficients and εil(x) ∼ N (0, σ2
i (x)) is the sampling

error and is independent of εi′l′(x
′) for any (i, l,x) 6= (i′, l′,x′).

The OSOA framework is applied in Shen et al. (2019). In the offline-simulation stage, they

first sample each alternative at some values of the covariates, and use the data to estimate the

coefficient β. In the online-application stage, the estimates of µ̂i(x) = x>β̂i, i = 1, . . . , k are

applied to solve online decision making problems. More specifically, in the offline-simulation

stage, they use the indifference-zone formulation, and defined the conditional probability of

correct selection (PCS) as

PCS(x) = P
(
µi∗(X)(X)− µî∗(X)(X) < δ|X = x

)
,

where δ is the indifference-zone parameter. In addition, the fixed design setting is assumed,

i.e., the design points x1, . . . ,xm are chosen properly and fixed, and that alternative i can be

sampled at xj repeatedly arbitrarily many times, for each i = 1, . . . , k and j = 1, . . . ,m. Let

X = (x1, . . . ,xm)> ∈ <m×d and Yil = (Yil(x1), . . . , Yil(xm))>. Then they proposed several

two-stage R&S procedures under the homoscedastic (σ2(xi) = σ2 for all xi, i = 1, . . . ,xm) and

heteroscedastic (σ2(xi) is different on xi, i = 1, . . . ,m) sampling errors setting, respectively.

The basic procedure is described as follow:

• In the first stage sampling, take n0 independent samples of each alternative i at each

design point, and estimate the coefficient β̂i(n0) and the variance of each alternative

S2
i =

1

n0m− d

n0∑
l=1

(
Yil −X β̂i(n0)

)> (
Yil −X β̂i(n0)

)
.

• In the second-stage sampling, compute the total sample size Ni = max{dh2S2
i /δ

2e, n0}

for each i, where h is a constant determined in advance based on different PCS criteria
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and different sampling error settings (homoscedastic or heteroscedastic), and dae denotes

the smallest integer no less than a.

• In the selection stage, for each alternative i, compute the overall estimate of its unknown

coefficients

β̂i =
1

Ni

(
X>X

)−1
X>

Ni∑
l=1

Yil,

and return î∗(x) = arg maxi∈S{xT β̂i}.

Shen et al. (2019) proved the statistical validities under different settings, and pointed out

that research on complex models to capture the relationship between the response of an

alternative and the covariates is a good potential directions for future work.

Pearce and Branke (2017) also considered R&S with covariates. However, the formula-

tion in their setting is different. They assumed the distribution of the covariate X as P(x), and

the aim is to find a mapping i∗(x) that maximizes the overall expected performance across all

the possibilities of the covariate X, i.e.,
∫

Θ µi(x)(x)P(x)dx. In addition, the problem is solved

under the Bayesian framework. More specifically, the performance surface µi(x) is predicted

by Gaussian process regression model, and the sampling policies for determining the sampling

point and the chosen alternative based on the expected improvement. To approximate the

expected improvement, three numerically integrating approaches are proposed.

R&S with covariates is a new problem under the R&S category. For each alternative,

its performance is not a constant but a surface (function) of covariates, so the aim of R&S

with covariates is not to find the best alternative, but to provide a policy (a mapping from

the covariates to alternatives) that tell us which alternative is the best when covariates are

observed. The complexity of the performance surfaces of alternatives and the large dimen-

sionality of the covariates make R&S with covariate more difficult than the classical setting

generally. The OSOA framework may be a potential way to overcome the difficulties. By

applying data analytics tools (e.g., linear regression and Gaussian regression in the previous

two works), the surfaces of alternatives performances can be learned in the offline-simulation

stage. In the online-application stage, the learned surfaces can be used to make decisions

immediately. There are some other R&S procedures such as knowledge gradient (Frazier
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et al. 2008, Ryzhov et al. 2012), optimal computing budget allocation (Chen et al. 2000,

Chen et al. 2010, Xiao et al. 2017, Xiao and Gao 2018), and we may consider how to adapt

these procedures under the OSOA framework to solve R&S with covariates.

To close this section, we introduce another type of problems with covariates, that is,

multi-armed bandit (MAB) with covariates. MAB and R&S were proposed at almost the

same time, and MAB is an important class of sequential decision making problems in the

fields of operations research, statistics and machine learning; see, for instance, Bubeck and

Cesa-Bianchi (2012) for a review. Different from the R&S to identify the best alternative2, the

aim of MAB is to make decisions that maximizes the cumulative rewards (roughly speaking,

when sampling an alternative, there is a reward for selecting this alternative). The offline-

simulation stage and the online-application (decision) stage are coupled at the same time in

MAB. MAB with covariates (also known as contextual MAB, bandits with side information,

etc.) has been studied widely in recent years. Parametric models (see Goldenshluger and

Zeevi 2009, Wang et al. 2005) and nonparametric models (see Perchet and Rigollet 2013,

Slivkins 2014) have been considered in the literature of MAB with covariates. The aim of

MAB with covariate is different from that of R&S with covariate. The former aims to obtain

the optimal discounted cumulative rewards, and does not care whether the true surfaces are

learned. However, the latter aims to estimate the surfaces with respect to covariates so that

it can select the best alternative or good alternatives with statistically significance.

5 Simulation Optimization with Covariates

In this section, we consider the third type of OSOA problems, simulation optimization (SO)

with covariates. Distinct from Section 4, we focus on continuous problems. Recall that the

classical SO problem is to solve

θ∗ = arg min
θ∈Θ

E[F (θ,Y)], (2)

2Notice that the problem “best arm identification in MAB” is similar to R&S, but the stochastic performance
(reward) is not normally distributed in this problem, and the way of analysis and the procedures of selection are
also different from R&S. See Audibert et al. (2010) and Kaufmann et al. (2016) for more details.
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where Θ ⊆ <d, Y are random variables in the stochastic system, and F is the sample

performance function of the stochastic system. There are many methods proposed to solve

this problem, such as stochastic approximation (see Kushner and Yin 2003 for a survey), and

sample average approximation (see Shapiro 2003 for a survey).

In some applications, there may be covariates in the objective function. For example, in

wind farms, the managers need to determine the amount of the electricity production an hour

in advance based on the knowledge on current observed informations such as the time of day,

the time of year, wind speed, electricity price, etc; see Hannah et al. (2010). In the urban

and air transportation, the optimal control policies should change with the observed states

in the transportation system and other information like weather and time. Let x ∈ X be the

covariates, and the SO with the covariate can be formulated by

θ∗(x) = arg min
θ∈Θ

E[F (θ,Y,x)], (3)

where the distributions of Y may be affected by x. Different from (2), the aim of (3) is to

find the surface of the optimal solution with respect to covariates x.

Hannah et al. (2010) considered a convex stochastic optimization problem with co-

variates, which is similar to SO with covariates in this paper. However, in their setting,

the covariates are uncontrollable and observed online, and the realizations of the random

variables Yi are determined only after observing the covariates xi and the action θi. They

proposed two approaches to solve the problem.

The first approach is the function-based. Let {xi,Yi}ni=1 be a set of n observations, and

{wn(x,xi)}ni=1 be a set of weights such that
∑n

i=1wn(x,xi) = 1. Similar to SAA in approxi-

mating the objective function, they developed a locally weighted average approximation, that

is,

F̄ (θ|x) =

n∑
i=1

wn(x,xi)F (θ,Yi,xi).

Then the estimated optimal solution is given by

θ̂
∗
(x) = arg min

θ∈Θ
F̄ (θ|x).
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Notice that, since x may affect the distributions of Y, Yi, i = 1, 2, . . . , n, are not necessarily

i.i.d. So it requires a weighted average approximation. The weights are like the likelihoods

in importance sampling that make the approximation be consistent. Hannah et al. (2010)

proposed to use kernel weights and Dirichlet process weights in the approximation, and proved

that θ̂
∗
(x) converges to the true optimal solution θ∗(x) under some mild conditions.

The second approach is gradient-based. In this approach, the sample performance function

F (θi,Yi,xi) cannot be observed, but only a gradient estimate at θi instead, i.e.,

ĝ(θi,Yi,xi) = ∇θF (θi,Yi,xi).

In addition, the objective function E[F (θ,Y,x)] is assumed to have some special structures,

and approximated by

F̄n(θ|x) =
d∑

k=1

fkn(θk|x),

where θk is the kth component of θ. fkn(y|x) is a univariate, piecewise linear function in

y, and it is convex for every x ∈ X . Based on this special structure and the observa-

tions {θi,xi, ĝ(θi,Yi,xi)}ni=1, the approximation F̄n(θ|x) can be updated sequentially. Since

fkn(θk|x) is piecewise linear, the slopes of the linear functions can be determined based on

the gradient estimates ĝ(θi,Yi,xi). However, xi, i = 1, 2, . . . , n, may be different from a new

value x, so, similar to function-based approach, kernel weights and Dirichlet process weights

are introduced in the procedure to estimate the slopes on x. Details refers to Algorithm 2 in

Hannah et al. (2010). In that paper, convergence of gradient-based approach was also studied

under some mild conditions.

Similar to R&S with covariate, we need to learn the optimal solution surface in SO with

covariates, which makes the problem more challenging. Distinct from the setting of Hannah

et al. (2010), the covariates may be controllable by us in some problems, and we can design

the covariates to obtain a good optimal solution surface. In addition, in the offline-simulation

stage, we can both build predictive models for objective functions and for optimal solutions,

so we may derive fundamentally different ways to solve this problem.
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6 Conclusion and Future Research

Due to the famous Moore’s law, the computing power has grown tremendously in past fifty

years, and it has profoundly changed every aspect of human life. In the simulation area,

the growing computing power has also changed the ways that simulation models are built

and simulation experiments are conducted and the applications that simulation may be used

on. On one hand, the availability of large-scale cheap and easily accessible computing power

makes a large amount of offline simulation experiments possible; on the other hand, simulation

experiments still take minutes to hours to execute and, therefore, cannot be used in making

many online decisions, where time windows for making decision are commonly in the order

of seconds to minutes, sometimes even milliseconds. To fill the gap, we summarize the

OSOA framework in this paper so that simulation becomes a viable tool for real-time decision

makings.

Based on our research experience, we propose some further research directions about

OSOA:

• Building new metamodeling techniques and theories in OSOA. As we have introduced

in Section 2.1, the goal of metamodeling problems in the OSOA framework is different

from that of classical metamodeling problems. In classical metamodeling problems, fit-

ting accuracy is the most important criterion. However, in the OSOA framework, the

metamodel (fitted surface) is used to make decisions, so the accuracy is not the only

criterion. How to best support the decisions is the most important goal of the meta-

modeling in the OSOA framework. Therefore, building new metamodeling techniques

and new theories under the OSOA framework are good research directions.

• Treating OSOA as a feedback loop. In the OSOA framework, the metamodels are often

used repeatedly (with different observed values of the covariates). Real data are often

observed after the decisions are made. Based on the real data and the simulated data, the

simulation models need to be updated to capture the features of the stochastic system,

e.g., better calibrating the model parameters and reducing model misspecifications.

Therefore, how to handle these feedback loops becomes another interesting research
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direction.

• Dealing with high dimensional covariates. In many practical problems, the dimension

of the covariates may be very high. For example in healthcare, a lot of information,

such as the demographic information and gene information, may be collected for a

patient. However, some diseases are only affected by a few of factors. That is, the

effective dimension is low. In the OSOA framework, since we may repeat the simulation

experiments and receive feedbacks regularly, we may utilize these information and some

machine learning techniques to identify the effective dimensions. How to deal with

high dimensional covariates and how to reduce dimensionality are interesting research

directions in the OSOA framework.

• Embedding SO algorithms in OSOA. There are many efficient SO algorithms proposed in

last two decades. An interesting research direction is to embed these algorithms to solve

SO problems with covariates. Notice that, in the OSOA framework, the problems of SO

with covariates may have both high dimensional decision variables and high dimensional

covariates. When designing the SO algorithms, these features need to be considered.
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under Lévy processes. European Journal of Operational Research, 221:368–377.

25



Dunnett, C. W. (1984). Selection of the best treatment in comparison to a control with an

application to a medical trial. In Santner, T. J. and Tamhane, A. C., editors, Design of

Experiments: Ranking and Selection, pages 21–34. CRC Press, New York.

Feng, M. and Staum, J. (2017). Green simulation: Reusing the output of repeated experi-

ments. ACM Transactions on Modeling and Computer Simulation, 37(4):Article 23.

Frazier, P. I., Powell, W. B., and Dayanik, S. (2008). A knowledge-gradient policy for sequen-

tial information collection. SIAM Journal on Control and Optimization, 47:2410–2439.

Fu, M. C. (2015). Stochastic gradient estimation. In Fu, M. C., editor, Handbooks of Simu-

lation Optimization, chapter 5, pages 105–147. Springer, New York.

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer, New York.

Glasserman, P., Heidelberger, P., and Shahabuddin, P. (1999). Asymptotically optimal im-

portance sampling and stratification for pricing path-dependent options. Mathematical

Finance, 9:117–152.

Goldenshluger, A. and Zeevi, A. (2009). Woodroofes one-armed bandit problem revisited.

The Annals of Applied Probability, 19(4):1603–1633.

Hannah, L. A., Powell, W. B., and Blei, D. M. (2010). Nonparametric density estimation

for stochastic optimization with an observable state variable. In Lafferty, J. D., Williams,

C. K. I., Shawe-Taylor, J., Zemel, R. S., and Culotta, A., editors, Advances in Neural

Information Processing Systems 23, pages 820–828. Curran Associates, Inc.

Hastie, T., Tibshirani, R., and Friedman, J. (2011). The Elements of Statistical Learning.

Springer-Verlag, New York, second edition.

Hong, L. J., Hu, Z., and Liu, G. (2014). Monte Carlo methods for Value-at-Risk and condi-

tional Value-at-Risk: A review. ACM Transactions on Modeling and Computer Simulation,

24(4):Article 22.

26



Hong, L. J., Nelson, B. L., and Xu, J. (2015). Discrete optimization via simulation. In Fu,

M., editor, Handbook of Simulation Optimization, chapter 2, pages 9–44. Springer, New

York.

Jiang, G., Fu, M. C., and Xu, C. (2016a). On sample average approximation algorithms for

determining the optimal importance sampling parameters in pricing financial derivatives
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