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Abstract

In financial engineering, sensitivities of derivative prices (also known as the Greeks) are
important quantities in risk management, and stochastic gradient estimation methods are
used to estimate them given the market parameters. In practice, the surface (function)
of the Greeks with respect to the underlying parameters are much more desired, because
it can be used in real-time risk management. In this paper, we consider derivatives with
multiple underlying assets, and propose three stochastic kriging-based methods, the element-
by-element, the importance mapping, and the Cholesky decomposition, to fit the surface of
the gamma matrix that can fulfill the time constraint and the precision requirement in real-
time risk management. Numerical experiments are provided to illustrate the effectiveness of
the proposed methods.
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1 Introduction

In financial engineering, sensitivities of derivative prices, also known as the Greeks, are important

quantities in risk management. Based on the sensitivity of the derivative price with respect to a

small movement of a given underlying market parameter, we can isolate the risk, and trade the

related underlying assets or instruments to achieve a desired risk exposure (Björk 2009). Hedging

strategies are often created to manage the risk of a derivative portfolio based on Greeks. For

instance, delta hedging and delta-gamma hedging are two commonly used hedging strategies that

are designed to reduce the risk from the fluctuation of the underlying assets, where delta and
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gamma are the first-order and second-order sensitivities1 of the derivative price with respect to the

price of the underlying asset, respectively. These strategies make delta and gamma particularly

important among the Greeks.

If the analytical formula of the price of a derivative is known, we can easily obtain the Greeks by

just taking partial derivative with respect to the corresponding underlying parameter. When the

analytical formula is unavailable, stochastic gradient estimation methods are powerful alternatives

for sensitivity analysis (see Fu 2006 for a thorough introduction). Finite-difference approximation

provides a “brute force” approach to gradient estimation and is easy to implement (Glasserman

2013). It is commonly used when we only have simulation outputs. If we know some information

about the payoff function or the probability density of underlying assets, pathwise method and the

likelihood ratio method are two commonly used approaches. The pathwise method (or perturbation

analysis) is originated by Ho and Cao (1983), and later elaborated by Broadie and Glasserman

(1996) and Fu and Hu (1997) in financial applications. It typically requires the payoff function

to be continuous. The likelihood ratio (or score function) method is proposed by Reiman and

Weiss (1989) and Glynn (1990). It requires no continuity of the payoff function by differentiating

the probability density function instead of the payoff function. However, its estimators typically

have larger variances than those of the pathwise method. As improvements and complements

of the pathwise and the likelihood ratio method, some other methods, e.g., kernel method (Elie

et al. 2007; Liu and Hong 2011), weak derivatives method (Pflug 1989, Heidergott et al. 2010),

generalized likelihood ratio method (Wang et al. 2012, Peng et al. 2018), are proposed.

In practice, the Greeks need to be estimated in real time, so that the risk managers can hedge the

risk of their portfolios when market parameters change. For instance, when using the delta-gamma

hedging strategy, the prices of the underlying assets (e.g. stock prices) may change frequently and

one has to adjust the portfolio in real time to hedge the risk. If the analytical formulae of the

prices of the derivatives included in the portfolio are available, one can obtain the delta and gamma

immediately by taking partial derivatives directly. For example, for a European call option, the

Black-Scholes formula provides the analytical formula of the price, coupled with the Greeks. It

is an important reason why the Black-Scholes model is popular among financial practitioners,

1Here, we use first-order and second-order sensitivities instead of first-order and second-order derivatives to
distinguish them from the derivatives as financial products.
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even though many point out that the Black-Scholes model is oversimplified (Schoutens 2003). For

portfolios including exotic derivatives with complicated underlying asset models, price formulae

are typically unavailable, and therefore calculating the delta and gamma in real time becomes a

challenging task. The stochastic gradient estimation methods mentioned above cannot be applied

directly due to the large computational burden, even though they can achieve any degree of

precision by simply increasing the simulation sample size. The computation time becomes an even

more significant issue if the portfolio includes derivatives with multiple underlying assets, e.g.,

basket option, rainbow option, and quanto option. In this setting, the delta is a vector and the

gamma is a matrix, which apparently needs more computation time than a scalar.

In this paper, we propose a series of approaches to obtain the gamma matrix surface, under

the offline-simulation-online-application (OSOA) framework proposed by Hong and Jiang (2018)

(also see Jiang et al. 2019). The matrix surface here means that the generalized surface that

each “point” on the surface is a matrix. Under the OSOA framework, we treat simulation as a

data generator, apply state-of-the-art analytic tools to build predictive models, and then use the

predictive models for real-time applications. The OSOA framework can be divided into two stages.

In the offline-simulation stage, we conduct a large amount of simulation experiments on different

scenarios of the parameters, then we use state-of-the-art data analytics tools to build a predictive

model. In the online-application stage, the predictive model acts like a simple model with closed-

form expressions and is used in real-time problems once the parameters are observed. The OSOA

framework is particularly suitable for financial applications, since there is a large amount of time

for offline simulation when the financial market closes, so one can choose the scenarios based on

the present market conditions to build a predictive model for the next trading day. In this paper,

we focus on the gamma matrix surface, and use it in real-time risk management problems. In

the offline-learning stage, we select some scenarios of the underlying asset prices, and estimate

the corresponding gamma matrix for each scenario via stochastic gradient estimation methods.

We then use interpolation methods to build the gamma matrix surface. Specifically, we use the

stochastic kriging method, see van Beers and Kleijnen (2003), Kleijnen (2009), Ankenman et al.

(2010) and Chen et al. (2013). However, the stochastic kriging methods in the literature are

designed only to handle scalars. In this paper, we consider how to extend it to handle matrices.

Moreover, the gamma matrix surface may have special structures, which make the fitting problem
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more challenging. For example, if the price formula is convex with respect to the prices of the

underlying assets, the gamma matrix is positive definite for any fixed prices of the underlying assets.

We also propose methods that can maintain the positive definiteness. Notice that the proposed

methods can be applied not only in estimating Greeks, but also in other real-time sensitivity

analysis or stochastic gradient estimation problems.

The rest of this paper is organized as follows. We first review the pathwise Greeks estimation

and stochastic kriging method in Section 2. Three matrix kriging methods, element-by-element,

importance mapping, and Cholesky decomposition methods, are proposed to estimate the gamma

matrix surface in Section 3. Numerical results are presented in Section 4, followed by conclusions

in Section 5.

2 Preliminaries

In this section, we review the ideas of the pathwise sensitivity estimation and stochastic kriging in

Sections 2.1 and 2.2, respectively. These ideas are used in later section in building gamma matrix

surfaces.

2.1 Pathwise Method

The pathwise method was originally proposed to estimate sensitivities of queueing systems, and

then extended to estimating Greeks; see Broadie and Glasserman (1996). In this subsection, we

recall the basic results of infinitesimal perturbation analysis (IPA) and smoothed perturbation

analysis (SPA), as the foundations of the following proposed methods.

Suppose that the discounted payoff function of a derivative Y (θ) is a random variable de-

fined on probability space (Ω,F , P ), where θ = (θ1, θ2, . . . , θd)
> ∈ Θ ⊆ Rd is the underlying

parameters, and we need to take derivative with respect to them. The price of the derivative

equals to E[Y (θ)], and the sth-order Greeks can be defined by ∂sE[Y (θ)]/∂θl11 ∂θ
l2
2 . . . ∂θ

ld
d , where

0 ≤ li ≤ d, i = 1, 2, . . . , d, and
∑d

i=1 li = s, s = 1, 2, . . .. If we can interchange the differentiation

and the expectation, i.e.,

∂sE[Y (θ)]

∂θl11 ∂θ
l2
2 . . . ∂θ

ld
d

= E

[
∂sY (θ)

∂θl11 ∂θ
l2
2 . . . ∂θ

ld
d

]
,
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then the unbiased IPA estimator of the corresponding Greek is given by ∂sY (θ)/∂θl11 ∂θ
l2
2 . . . ∂θ

ld
d .

The interchange of the differentiation and the expectation is valid if the discounted payoff

function is Lipchitz continuous. For instance, the discounted payoff function of a European call

option Y (S(0)) = e−rT{maxS(T )−K, 0} is Lipchitz continuous with respect to S(0), where S(0)

is the initial value of the underlying asset price, S(T ) = S(0) exp ((r − 1/2σ2)T + σW (T )) is the

underlying asset price at maturity T , W (T ) is a Brownian motion observed at time T , K is the

strike price, σ is the volatility of underlying price, and r is the risk-free interest rate. In this case,

Y (S(0)) is differentiable with respect to S(0) with probability 1, so the unbiased IPA estimator

of delta is given by ∂Y (S(0))/∂S(0) = e−rTS(T )1{S(T )>K}/S(0). However, the IPA estimator of

gamma cannot be obtained due to the discontinuity of the indicator function in ∂Y (S(0))/∂S(0)

with respect to S(0).

To overcome the discontinuity, we can apply smoothed perturbation analysis (SPA) that

smooths Y (θ) via conditioning. Basically, SPA first smooths the discounted payoff function by

taking conditional expectation on some proper random variables or events Z, i.e.,

∂sE[Y (θ)]

∂θl11 ∂θ
l2
2 . . . ∂θ

ld
d

=
∂sE[E[Y (θ)|Z]]

∂θl11 ∂θ
l2
2 . . . ∂θ

ld
d

.

Notice that Y (θ) itself may be discontinuous, but the conditional expectation E[Y (θ)|Z] may be

Lipchitz continuous. Then we can interchange the differentiation and the expectation to obtain

the unbiased SPA estimator ∂sE[Y (θ)|Z]/∂θl11 ∂θ
l2
2 . . . ∂θ

ld
d . Notice that the key to SPA is to find

an appropriate random variable Z to condition on.

Remark 1. In this paper we use SPA to estimate the gamma, which performs quite well and can

reach any degree of precision by increasing the sample size. However, we can also use the likelihood

ratio method, or other gradient estimation methods to estimate the gamma. After estimating the

gammas at different scenarios of the underlying asset prices, we use the methods proposed in Section

3 to build the gamma surface.

2.2 Stochastic Kriging Metamodel

Ankenman et al. (2010) proposed a stochastic kriging approach to construct the surface of scalar

simulation outputs. Suppose that we are interested in modeling an unknown surface y(x) ∈ R, and
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x = (x1, x2, · · · , xd)> ∈ Rd denotes a design point (think a scenario of the underlying asset prices).

In the stochastic simulation, the hth simulation replication at the design point x is modeled as

Yh(x) = f(x)>β + M(x) + εh(x), (1)

where f(x) is a p × 1 vector of preset functions of x, representing the prior information of the

unknown surface, and β is a p × 1 vector of unknown parameters. M is a realization of second-

order stationary Gaussian random field with mean 0. Usually, if we do not know any information

about f(x), we can simply let f(x)>β = β0. The noise terms ε1(x), ε2(x), · · · are independent and

identically distributed normal distribution N(0, V (x)) at each design point x, independent of M,

and the variance V (x) only depends on the design point x.

Furthermore, we choose N design points x1,x2, · · · ,xN in the design space. Suppose that we

replicate the experiment nk times for the design point xk, k = 1, 2, . . . , N . The sample mean of the

simulation outputs and the simulation errors at the design point xk are Ȳ(xk) = 1/nk
∑nk

h=1 Yh(xk)

and ε̄(xk) = 1/nk
∑nk

h=1 ε
h(xk), k = 1, . . . , N . Then the averaged response is given by

Ȳ(x) = β0 + M(x) + ε̄(x).

Let x0 be a new point that we are interested in its response value Y(x0) = β0 + M(x0).

Here we consider a linear predictor of Y(x0). Let ΣM be the N × N variance-covariance ma-

trix among the response values at N design points, i.e., the (i, j)-th element in the matrix

(ΣM)i,j = Cov(M(xi),M(xj)). One can further assume that Cov(M(xi),M(xj)) = τ 2R(xi,xj;θ),

where R(xi,xj;θ) is the correlation that depends only on xi− xj, i, j = 1, 2, . . . , N , and unknown

parameter θ according to the second-order stationary condition of M. Let ΣM(x0, ·) denote the

covariance vector between M(x0) and M(xi), i = 1, 2, . . . , N , i.e., the ith element in the vector

(ΣM(x0, ·))i = Cov (M(x0),M(xi)). Let Σε = diag [Var(ε̄(x1)),Var(ε̄(x2)), . . . ,Var(ε̄(xN))] be the

covariance matrix of simulation noise terms. When the spatial parameters θ, τ 2, the noise term

matrix Σε, and β0 are known, the MSE-optimal predictor, which minimizes the mean squared error

among all the linear predictors of the response ω0(x0) + ω(x0)>Ȳ at x0, is

Ŷ(x0) = β0 + ΣM(x0, ·)>[ΣM + Σε]
−1(Ȳ − β01N),

where 1N is the N × 1 vector of ones and Ȳ =
(
Ȳ(x1), Ȳ(x2), . . . , Ȳ(xN)

)>
is the N × 1 vector of

response sample means.
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In general, θ, τ 2, β0, and Σε are unknown. Then, we can first estimate Σε by

Σ̂ε = diag{V̂ (x1)/n1, V̂ (x2)/n2, · · · , V̂ (xN)/nN},

where

V̂ (xk) =

nk∑
h=1

(Yh(xk)− Ȳ(xk))
2/(nk − 1) (2)

is the sample variance of response replications at design point xk, k = 1, 2, . . . , N . Then θ, τ 2,

and β0 can be estimated via a maximum-likelihood estimation (MLE), and denoted by β̂0, τ̂
2, θ̂;

see Ankenman et al. (2010). Therefore, the stochastic kriging predictor is given by,

Ŷ(x0) = β̂0 + Σ̂M(x0, ·)>[Σ̂M + Σ̂ε]
−1(Ȳ − β̂01N),

where Σ̂M(x0, ·) and Σ̂M are obtained by substituting θ̂ and τ̂ 2.

The stochastic kriging metamodel combines the intrinsic uncertainty that linear regression has

assumed and the extrinsic uncertainty from simple kriging, and provides a powerful and flexible

tool to model the whole response surface given limited information of design points and responses.

However, it only applies to scalar response. In this paper, we consider the problem where the

response is a matrix, and possibly a positive definite matrix.

3 Matrix kriging method

Let x = (x1, x2, . . . , xd)
> ∈ X ⊆ Rd be a scenario of underlying asset prices (i.e., design point),

where xi is the price of the ith underlying asset, i = 1, 2, . . . , d, and X is the scenario space. Let

Sd be the space of d× d symmetric matrix. Let

Φ : Rd → Sd

be a mapping. The matrix surface can be defined by the mapping Φ, and the matrix surface fitting

problem tries to measure the relationship between the scenario space, which is usually a vector

space, and the corresponding response space, which is a matrix space. In this section, we focus on

the gamma, which is a commonly used second-order Greeks in risk management, and propose a

series of methods to build the gamma matrix surface via the stochastic kriging.

Suppose that the design points {x1,x2, . . . ,xN} are given. For any xk, k ∈ {1, 2, . . . , N}, the

corresponding gamma Φ(xk) is estimated by a stochastic gradient estimation method, specifically,

7



the SPA method. Let the hth simulation replication at the design point xk be Hh(xk), which is

modeled as Hh(xk) = Φ(xk) + εh(xk), with εh(xk) being the simulation noise matrix. The noise

can be related to the randomness of the payoff function and the gradient estimation method that

we use. The (i, j)th elements in the simulation noise matrices ε1
i,j(xk), ε

2
i,j(xk), . . . represent the

independent and identically distributed mean-zero sampling noise observed for each replication

taken at design point xk, so Hh(xk) is an unbiased estimator of Φ(xk).

Now we are interested in fitting the overall surface of the gamma, which is used to predict

Φ(x0) ∈ Sd at any design point x0 ∈ X in real time. If d = 1, the problem degenerates to the

classical setting, where the response is a scalar, then we can apply classical stochastic kriging in

Section 2.2 to fit the surface. The more challenging setting is d > 1 (especially d� 1), where the

responses are matrices instead of scalars, and we propose the following approaches to handle the

problem.

3.1 Element-by-Element Method

When d > 1, the simulation outputs {Hh(xk), h = 1, . . . , nk, k = 1, . . . , N} are matrices, and the

classical stochastic kriging cannot be applied directly. One natural way is to decompose the matrix

by elements. That is, we treat each element in the matrix separately, and then use the stochastic

kriging on each element to fit the surface. Let Hh
i,j(xk) denote the (i, j)th element in the matrix

Hh(xk), h = 1, . . . , nk. Then, we use {xk, Hh
i,j(xk), h = 1, 2, . . . , nk}, k = 1, . . . , N , to predict the

(i, j)th element in Φ(x0) via the stochastic kriging. Specifically, we assume that the hth simulation

replication is modeled as

Hh
i,j(x) = βi,j + Mi,j(x) + εhi,j(x), (3)

which is similar to (1). Let ΣMi,j
denote the covariance matrix among the response values at design

points x1,x2, . . . ,xN , with the (p, q)th element in the matrix
(
ΣMi,j

)
p,q

= Cov(Mi,j(xp),Mi,j(xq)) =

τ 2
i,jR(xp,xq;θi,j), where R is introduced in Section 2.2, and ΣMi,j

(x0, ·) is the covariance vector

with the qth element (ΣMi,j
(x0, ·))q = Cov(Mi,j(x0),Mi,j(xq)). Let

Σεi,j = diag [Var(ε̄i,j(x1)),Var(ε̄i,j(x2)), . . . ,Var(ε̄i,j(xN))] ,
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where ε̄i,j(xk) = 1/nk
∑nk

h=1 ε
h
i,j(xk), k = 1, 2, . . . , N . So the (i, j)th element in Φ(x0), which

denotes by Φi,j(x0), is predicted by

Φ̂i,j(x0) = β̂i,j + Σ̂Mi,j
(x0, ·)>[Σ̂Mi,j

+ Σ̂εi,j ]
−1(H̄i,j − β̂i,j1N), (4)

where H̄i,j =
(
H̄i,j(x1), H̄i,j(x2), . . . , H̄i,j(xN)

)>
with H̄i,j(xk) = 1/nk

∑nk
h=1H

h
i,j(xk), k = 1, 2, . . . , N .

As introduced in Section 2.1, the parameters β̂i,j, τ̂
2
i,j, and θ̂i,j are estimated via MLE, so that

Σ̂Mi,j
(x0, ·) and Σ̂Mi,j

can be estimated accordingly, and Σ̂εi,j is estimated by the sample variances.

Notice that Φ(x0) is a symmetric matrix, so we only construct the upper (or lower) triangular el-

ement surfaces, and the total number of surfaces need to be fitted is d(d + 1)/2. We call this

approach the element-by-element (EE) method, and we summarize the procedure in Algorithm 1.

Algorithm 1 Gamma surface estimation via EE

Input: The design points x1,x2, . . . ,xN ; The simulation outputs of gamma matrices {Hh(xk), h =
1, 2, . . . , nk}, k = 1, . . . , N , with the (i, j)th element Hh

i,j(xk); the new point x0.
1: for i = 1 to d do
2: for j ≥ i do
3: Estimate Σ̂εi,j via the sample variance. Based on the model (3), use MLE to estimate

the parameters β̂i,j, τ̂
2
i,j, and θ̂i,j. Then calculate Σ̂Mi,j

and Σ̂Mi,j
(x0, ·).

4: Use stochastic kriging to obtain the (i, j)th element surface in the gamma matrix. The

predictor Φ̂i,j(x0) on the new point x0 is given by (4).

5: Let Φ̂j,i(x0) = Φ̂i,j(x0).
6: end for j
7: end for i

Output: Return the entire gamma surface Φ̂(x0), where the (i, j)th element is Φ̂i,j(x0).

Algorithm 1 provides a way to fit the gamma matrix surface, and we can use the EE method to

solve the delta surface fitting problem as well. In the offline-simulation stage, we use this algorithm

to build up the predictive model (gamma surface). In the online-application stage, the gamma

matrix can be directly calculated by the predictive model. Then, it can be applied in real-time

applications, e.g., real-time delta-gamma hedging. However, the EE method has two drawbacks:

• The computational effort is high if d is large, because we need to fit d(d+ 1)/2 surfaces. In

practice, financial portfolios may contain hundreds of assets, which makes the gamma matrix

very large.
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• The EE method considers all elements in isolation and ignores the relationship among them.

Therefore, it may destroy the structure of the matrices and result in some severe problems.

For example, we consider the gamma matrix of an arithmetic average basket call option

with two underlying assets. In this setting, the responses are two-dimensional Hessian ma-

trices (i.e., the gamma) of function E[Y (x)]. Notice that E[Y (x)] is convex, therefore, the

gamma matrices are positive semidefinite. However, if we decompose the matrix by ele-

ments, and fit the element surfaces separately, then the fitted matrices may not be positive

semidefinite. Appendix A shows an example that one predicted matrix by the EE method

at x0 = [110.25; 110] is

Φ̂(x0) =

(
3.56× 10−3 3.96× 10−3

3.96× 10−3 3.16× 10−3

)
,

which has a negative eigenvalue −5.88 × 10−4. We find that this is not a rare case in the

normal setting, and this problem will be more severe if the pathwise estimators have large

variances.

In the next two subsections, we propose two methods to tackle these two drawbacks.

3.2 Importance Mapping Method

Firstly, we consider how to overcome the drawback of high computational effort for multi-dimensional

matrices. One way is to map the matrix to a scalar that summarizes the important property of

the matrix. We construct an importance mapping

Ψ : Sd → R

to represent the critical property of the gamma matrix. Recall that Sd is the space of symmetric

matrices and R is the real line. Notice that there are many ways to construct the mapping Ψ. For

instance, the operators, such as trace, minimum or maximum eigenvalue, and determinant, are all

such mappings and they summarize the critical characteristics of the matrix in different ways.

For any design point x, we construct the corresponding π(x) via compound mappings Ψ · Φ,

such that π(x) = Ψ(Φ(x)) ∈ R. For any design point xk, let Πh(xk) , Ψ(Hh(xk)) be the hth

simulation output after Ψ mapping on the matrix Hh(x) at the design point xk. Similar to (1),
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we model Πh(x) as

Πh(x) = βI0 + MI(x) + εhI (x), (5)

where βI0 is a constant. Let ΣMI
denote the covariance matrix among MI(xi) and MI(xj), i, j =

1, 2, . . . , N , with the spatial parameter θI and τ 2
I , and ΣMI

(x0, ·) denote the covariance vector

among MI(x0) and M(xi), i = 1, 2, . . . , N . The simulation noise matrix is denoted by

ΣεI = diag [Var(ε̄I(x1)),Var(ε̄I(x2)), . . . ,Var(ε̄I(xN))] ,

where ε̄I(xk) = 1/nk
∑nk

h=1 ε
h
I (xk), k = 1, 2, . . . , N .

After determining the mapping Ψ and transferring the matrix data to the scalar data, we can

construct the surface of π(x) using stochastic kriging introduced in Section 2.2. Notice that the

kriging is a kind of linear predictor, because the response value at x0 is predicted by a linear

combination of the given response values at xi, i = 1, 2, . . . , N . Specifically, stochastic kriging uses

the linear form ω(x0) + ω(x0)>Π̄ to predict π(x0), where Π̄ = (Π̄(x1), Π̄(x2), . . . , Π̄(xN))> with

Π̄(xk) = 1/nk
∑nk

h=1 Πh(xk), k = 1, 2, . . . , N , and ω∗(x0) = βI0 − βI0ΣM(x0, ·)>[ΣM + Σε]
−11N

and ω∗(x0)> = ΣM(x0, ·)>[ΣM + Σε]
−1. If the optimal ω∗(x0) and ω∗(x0) are obtained, we can

then use the same weight to each element in the matrix to obtain the element surfaces, that is, the

(i, j)th element in gamma matrix at x0 can be predicted by ω∗(x0)+ω∗(x0)>H̄i,j, i, j = 1, 2, . . . , d.

Therefore, we build the gamma surface.

However, in this approach, the predictor ω∗(x0) + ω∗(x0)>H̄i,j may be biased from the true

value βi,j, i, j = 1, 2, . . . , d. Specifically, since E[H̄i,j] = βi,j1N ,

E
[
ω∗(x0) + ω∗(x0)>H̄i,j

]
= E

[
βI0 − βI0ΣM(x0, ·)>[ΣM + Σε]

−11N + ΣM(x0, ·)>[ΣM + Σε]
−1H̄i,j

]
= βI0

(
1−ΣM(x0, ·)>[ΣM + Σε]

−11N
)

+ βi,jΣM(x0, ·)>[ΣM + Σε]
−11N . (6)

Notice that ΣM(x0, ·)>[ΣM + Σε]
−11N does not necessarily equal to 1, so the predictor is biased.

One possible way to overcome this problem is to replace βI0 in ω∗(x0) by βi,j, then by (6), it is

easy to show that the predictor is unbiased. However, this way needs to estimate βi,j in each

element model (3), where we need to implement the MLE d(d+ 1)/2 times to estimate βi,j. As a

better way to address the computational difficulty in calculating many MLEs, we consider another
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kriging method in deterministic simulation experiments, called ordinary kriging, which does not

necessarily know βi,j, see Stein (1999). van Beers and Kleijnen (2003) considered to use the

same kriging method in stochastic simulation. To distinguish from the stochastic kriging method

introduced in Section 2.2, we call this approach stochastic ordinary kriging.

Specifically, we assume that the π(x0) = βI0 + MI(x0) is predicted by the linear predictor

w(x0)>Π̄ =
N∑
i=1

wi(x0)Π̄(xi), where
N∑
i=1

wi(x0) = 1,

where w(x0) = (w1(x0), w2(x0), . . . , wN(x0)). Similar to ordinary kriging (see Cressie 1993), the

criterion to choose the optimal w∗(x0) is to minimize the mean squared prediction error defined

as E
[(
π(x0)−

∑N
i=1 wi(x0)Π̄(xi)

)2]
subject to

∑N
i=1wi(x0) = 1. Then, by Lagrangian relaxation,

we need to solve

min
w
E

(π(x0)−
N∑
i=1

wi(x0)Π̄(xi)

)2
+ 2α

(
N∑
i=1

wi(x0)− 1

)
, (7)

where α is the Lagrangian multiplier. Notice that (ΣMI
)i,j = Cov(MI(xi),MI(xj)) and (ΣεI )i,i =

Var(1/ni
∑ni

h=1 ε
h
I (xi)), and (ΣεI )i,j = 0 for i 6= j. Then, (7) is equivalent to

min
w

N∑
i=1

N∑
j=1

wi(x0)wj(x0) ((ΣMI
)i,j + (ΣεI )i,j)− 2

N∑
i=1

wi(x0)(ΣMI
(x0, ·))i + 2α

(
N∑
i=1

wi(x0)− 1

)
.

According to van Beers and Kleijnen (2003), the optimal w∗(x0) is given by

w∗(x0)> =

(
ΣMI

(x0, ·) + 1N
1− 1>N(ΣMI

+ ΣεI )
−1ΣMI

(x0, ·)
1>N(ΣMI

+ ΣεI )
−11N

)>
(ΣMI

+ ΣεI )
−1.

Thus, the predictor is given by

π̂(x0) =

(
ΣMI

(x0, ·) + 1N
1− 1>N(ΣMI

+ ΣεI )
−1ΣMI

(x0, ·)
1>N(ΣMI

+ ΣεI )
−11N

)>
(ΣMI

+ ΣεI )
−1Π̄(xi).

ΣεI can be estimated using the sample variance, that is, let

V̂ (xi) =
1

ni − 1

ni∑
h=1

(
Πh(xi)− Π̄(xi)

)2
, (8)

then

Σ̂εI = diag
{
V̂ (x1)/n1, V̂ (x2)/n2, . . . , V̂ (xN)/nN

}
. (9)
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Similar to Theorem 1 of Ankenman et al. (2010), we make the following assumption, and then

prove that estimating ΣεI by the sample variance introduces no prediction bias. The proof is

included in Appendix B.

Assumption 1. Suppose that Πh(x) is modeled by (5). MI is second-order stationary Gaussian

random field, and ε1I(xi), ε
2
I(xi), . . . , ε

ni
I (xi) are i.i.d. normal distribution with mean 0 and variance

V (xi), independent of εh(xj) for all h and j 6= i, and independent of MI .

Theorem 1. Under Assumption 1, suppose that Σ̂εI is given by (9), and let

̂̂π(x0) =

(
ΣMI

(x0, ·) + 1N
1− 1>N(ΣMI

+ Σ̂εI )
−1ΣMI

(x0, ·)
1>N(ΣMI

+ Σ̂εI )
−11N

)>
(ΣMI

+ Σ̂εI )
−1Π̄.

Then, E[̂̂π(x0)− π(x0)] = 0.

After obtaining the optimal weights of the surface of π(x0), we can apply the weights directly

into each element of the gamma matrix. Let

ŵ∗(x0)> =

(
ΣMI

(x0, ·) + 1N
1− 1>N(ΣMI

+ Σ̂εI )
−1ΣMI

(x0, ·)
1>N(ΣMI

+ Σ̂εI )
−11N

)>
(ΣMI

+ Σ̂εI )
−1. (10)

Then

Φ̂i,j(x0) = ŵ∗(x0)>H̄i,j, for i ≤ j, i, j = 1, 2, . . . , d, (11)

that is, to obtain the surface of the element Φi,j(x0) in the matrix, we use the same weight of the

surface of π(x0). We call this approach the importance mapping (IM) method, and we summarize

the procedure in Algorithm 2. This algorithm shows the procedure of building up the predictive

model via IM in the offline-simulation stage. In the online-application stage, we use the predictive

model to do the real-time delta-gamma hedging.

Under the appropriate assumptions, we can prove that the predictor of each element in the

matrix is unbiased. The proof is included in Appendix C.

Assumption 2. Suppose that each of the elements in the matrix is modeled by (3). For given i, j,

Mi,j is second-order stationary Gaussian random field, and ε1
i,j(xk), ε

2
i,j(xk), . . . , ε

ni
i,j(xk) are i.i.d.

normal distribution with mean 0 and variance Vi,j(xk), independent of εhi,j(xp) for all h and p 6= k,

and independent of Mi,j.
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Algorithm 2 Gamma surface estimation via IM

Input: The design points x1,x2, . . . ,xN ; The simulation outputs of gamma matrices {Hh(xk), h =
1, 2, . . . , nk}, k = 1, 2, . . . , N ; the new point x0.

1: Map the gamma matrices to scalars Πh(xk) = Ψ(Hh(xk)), h = 1, 2, . . . , nk, k = 1, 2, . . . , N .

2: Estimate Σ̂εI via the sample variance. Use MLE to estimate the parameters θ̂I and τ̂ 2
I , then

calculate Σ̂MI
and Σ̂MI

(x0, ·).
3: Use stochastic ordinary kriging to obtain the surface of π(x0). The optimal weight ŵ∗(x0) of

the linear combination is given by (10) with substituting Σ̂MI
and Σ̂MI

(x0, ·).
4: for i = 1 to d do
5: for j ≥ i do
6: Let Φ̂i,j(x0) = ŵ∗(x0)>H̄i,j, and Φ̂j,i(x0) = Φ̂i,j(x0).
7: end for j
8: end for i

Output: Return the entire gamma surface Φ̂(x0), where the (i, j)th element in it is Φ̂i,j(x0).

Theorem 2. Under Assumptions 1 and 2, suppose that Σ̂εI is given by (9), and the predictor

Φ̂i,j(x0) is given by (11). For any given linear importance mapping Ψ such that Ψ(Φ(x)) =∑d
i=1

∑d
j=1 ui,jΦi,j(x), where ui,j, i, j = 1, 2, . . . , d, are the weights in the linear mapping, we have

E[Φ̂i,j(x0)− Φi,j(x0)] = 0 for i, j = 1, 2, . . . , d.

Notice that the trace operator is a linear mapping, where ui,j = 1 for i = j, and ui,j = 0 for

i 6= j. Here, the linear importance mapping Ψ is required, because it is a sufficient condition to

achieve the independence between the sample variance of simulation noise V̂i,j(xk) at each design

point xk and the sample mean H̄i,j in Algorithm 2. So we can prove that the importance mapping

method is still unbiased along with Theorem 1. But for non-linear importance mapping such as

maximum eigenvalue and determinant, the sample variance and the sample mean of simulation

noise may not be independent, so the importance mapping method may introduce bias in fitting

gamma surface in general.

3.3 Cholesky decomposition

When we consider the gamma of derivatives with multiple underlying assets, i.e., the Hessian matrix

of the derivative price with respect to underlying asset prices, it may have certain properties. If

the derivative price is convex with respect to underlying asset prices, the corresponding gamma

matrix is positive semidefinite. However, the EE method cannot maintain this property (see the

example in Section 2.1). For the IM method, the component ŵi(x0), i = 1, 2, . . . , N, in ŵ∗(x0)
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may be negative, so the estimated gamma matrix via the IM method does not guarantee to be

positive semidefinite either. In this subsection, we propose a new approach to maintain the positive

(semi)definiteness of the gamma matrix when this property is important.

The Cholesky decomposition or Cholesky factorization is a decomposition of a positive-definite

matrix into the product of a unique lower triangular matrix and its transpose; see Meyer (2013).

Specifically, if the derivative price is strictly convex with respect to the underlying assets price, the

gamma matrix Φ(x) is positive definite, but not for each simulation output Hh(xk) calculated by

SPA estimator, which is the Hessian matrix of conditional expectation of payoff function E[Y (θ)|Z].

The realization of the Hessian matrix on each sample path may not be positive definite although

its expectation is positive definite. Some examples are shown in Appendix D. Here, we can assume

that the sample mean of the simulation output H̄(xk) = 1/nk
∑nk

h=1 Hh(xk) is positive definite by

choosing larger nk, since it converges to Φ(xk) as nk → ∞ with probability 1. So we can apply

Cholesky decomposition to H̄(xk) to obtain a lower triangular matrix L̄(xk), such that

H̄(xk) = L̄(xk)L̄(xk)
>.

For the gamma matrix Φ(x0), let φ(x0) be the lower triangular matrix of the Cholesky decompo-

sition, i.e.,

Φ(x0) = φ(x0)φ(x0)>.

Therefore, instead of predicting Φ(x0), we can predict the lower triangular matrix φ(x0) first,

whose predictor is denoted by φ̂(x0), then Φ(x0) is predicted by

Φ̂(x0) = φ̂(x0)φ̂(x0)>.

To predict φ(x0), we can still use the EE or IM method. If the dimension d is small, we may

use the EE method (denoted by Chol-EE). If d is large, we may use the IM method (denoted by

Chol-IM). Under both the EE and IM methods with a linear mapping, the predictors for φ(x0)

are still unbiased. However, the estimator of Φ(x0) may not be unbiased because we construct the

gamma by φ̂(x0)φ̂(x0)>. For further extension, we can apply LDL decomposition (see Meyer 2013)

instead of Cholesky decomposition to guarantee the positive semi-definiteness instead of positive

definiteness.
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There is another issue needs to be addressed in implementing Cholesky decomposition. We

know that the simulation output Hh(xk) may sometimes not be positive definite. To be specific,

Cholesky decomposition can only be conducted on a sample mean H̄(xk) by increasing the sample

size nk. So we cannot estimate the covariance matrix of the simulation noise Σ̂εi,j for EE or Σ̂εI

for IM via the sample variance directly (see (2) or (8)), since we cannot even conduct the Cholesky

decomposition to obtain triangular matrices for those non-positive semidefinite observations. Here

we propose to use bootstrap to estimate the covariance matrix of the simulation noise to overcome

this difficulty. For more detail about bootstrap, refer to Efron and Tibshirani (1993). We provide

the following procedure to approximate the variance of each element of L̄(xk) via bootstrap:

(i) For given xk, draw nk observations, with replacement, from the original data {Hh(xk), h =

1, 2, . . . , nk}, and called these observations the bootstrap sample.

(ii) Calculate the sample mean H̄b(xk) of the bootstrap sample, then apply Cholesky decompo-

sition in order to obtain the corresponding low triangular matrix L̄b(xk).

(iii) Implement the first two steps B times and obtain {L̄b(xk), b = 1, 2, . . . , B}.

(iv) Let L̄b(xk)i,j denote the (i, j)th element in the matrix L̄b(xk). Then the variance of the

(i, j)th element of matrix L̄(xk), denoted by Var(L̄(xk)i,j), is approximated by

1

B

B∑
b=1

[
L̄b(xk)i,j −

1

B

B∑
b=1

L̄b(xk)i,j

]2

.

Here, nk observations are drawn with replacement in bootstrap because we initially choose

the large enough nk to guarantee the positive semidefiniteness of H̄(xk) as well as the positive

semidefiniteness of H̄b(xk). After obtaining the variances of elements in L̄(xk), k = 1, 2, . . . , k, we

can apply Algorithms 1 and 2 to implement EE-Chol and IM-Chol, respectively.

To sum up, for fitting the gamma matrix surface, we propose three different types of approaches.

The pros and cons are illustrated as follows,

• The first type is the EE method, i.e., we first treat each element in the matrix separately as

a single surface fitting problem, and then put all the element surfaces together. This type
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of methods is straightforward and easy to implement. However, the estimation accuracy is

hard to guarantee. The assumption of this type of methods excludes the situation that the

elements in one matrix are usually correlated.

• The second type is the IM method, i.e., we first use an importance mapping to map the

matrix to a scalar, and then apply the same linear combination weights in the scalar surface

fitting to elements in the matrix to obtain the element surfaces. This type of methods can

obtain the unbiased estimation and become really efficient if the dimension is quite large.

• The third type is the Cholesky decomposition-based method, i.e., we first decompose the

gamma matrix into a lower triangular matrix, and then use the EE or IM method to fit the

element surfaces of the lower triangular matrix. Cholesky decomposition-based method can

keep the positive definiteness of the gamma matrix.

4 Numerical Experiments

In this section, we consider two derivatives with multi-underlying assets, the geometric average

basket option and the arithmetic average basket option, as the representative examples to evaluate

our proposed methods. The basket option is a family of options with a basket of underlying assets,

such as securities, currencies, etc. It gradually becomes quite popular in the financial market

to hedge risk from the co-movement of several underlying assets, multinational exchange rates,

etc. Moreover, investors often prefer basket options to individual options on each underlying that

makes up the basket, because they are cheaper.

We compare the proposed methods. In the IM methods, we use trace, maximum eigenvalue,

determinant as the importance mappings. As discussed above, as the dimension of the response

matrix increases, the computational burden of the EE and Chol-EE increases fast in the order of

d2, because they repeatedly conduct the maximum-likelihood estimation in the stochastic kriging

procedure. Therefore, the IM method outperforms EE method in terms of computational effort.

Obviously, Cholesky decomposition-based methods outperform those methods without Cholesky

decomposition if we need to carefully consider the positive definiteness of estimated gamma ma-

trices. In the following numerical experiments, we compare the estimation accuracy of all the

methods. Specifically, we evaluate the performance of elements, trace, maximum eigenvalue, and
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minimum eigenvalue of the estimated matrix, and we further examine the performance of the pro-

posed methods using the accuracy of the delta-gamma approximation in order to investigate the

performance when gamma is used in risk management problems.

4.1 Gamma estimation

Consider a vanilla basket call option with d underlying stocks S1(t), S2(t), . . . , Sd(t), where Si(t) =

Si(0) exp ((µi − σ2
i /2)t+ σiWi(t)) is a geometric Brownian motion. Suppose that S1(t), S2(t), . . . , Sd(t)

are independent of each other. Let T be the maturity of the option, K be the strike price, and r

be risk-free interest rate. The price of an arithmetic average basket call option is

E
[
Y A(x)

]
= e−rTE

(1

d

d∑
i=1

Si(T )−K

)+
 ,

where x = (S1(0), S2(0), . . . , Sd(0))> is a vector containing all the initial underlying stock values

and Y A(x) is the discounted payoff function.

The price of a geometric average basket call option is

E
[
Y G(x)

]
= e−rTE

[
( d
√
S1(T )S2(T ) · · ·Sd(T )−K)+

]
,

where Y G(x) is the discounted payoff function. The gamma matrices of these call basket options

ΦA(x) = ∇2
xE
[
Y A(x)

]
,

and

ΦG(x) = ∇2
xE
[
Y G(x)

]
,

are two symmetric matrices with dimension d. Specifically, the expected payoff of arithmetic

average basket call option is a convex function, then the gamma matrix of the basket option is

positive semidefinite. Since ΦA(x) has zero minimum eigenvalues only in an area with probability

measure zero, we can further claim that ΦA(x) is strictly positive definite.

For the selection of the design points {xk, k = 1, 2, . . . , N}, we recommend Latin hypercube

sampling (see Glasserman 2013). On each design point xk, we apply SPA to estimate the gamma

matrix. The SPA estimator for geometric average basket call option and arithmetic average basket

call option are provided in Appendices E and F, respectively. Therefore, once we have the design
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points and the corresponding observations of estimated gamma matrices, we apply the proposed

methods to fit the overall matrix surface and evaluate the performance at preset testing points.

Notice that the price of the geometric average basket option has an analytical formula, so the

gamma matrix also has an analytical formula, which is provided in Appendix G. However, the

price of arithmetic average call basket option is rather complicated, and the analytical formula is

unavailable. Therefore, we evaluate the true gamma matrix by 108 samples at each testing point.

4.2 Parameter settings

Let both the arithmetic average basket option and geometric average basket option share the

same benchmark underlying stock values S = (S1, S2, . . . , Sd), risk-free interest rate r, maturity

T , strike price K, and volatility σ = (σ1, σ2, . . . , σd). The benchmark underlying stock value S is

used to generate the design points. That is, the design point xk ∈ [0.9S1, 1.1S1]× [0.9S2, 1.1S2]×

· · · × [0.9Sd, 1.1Sd] ⊂ Rd is selected by Latin hypercube sampling. For each design point xk, let

the number of observations that estimate the gamma matrices be constant, i.e., nk = n for all

k = 1, 2, . . . , N . The parameter setting in the experiments is listed in Table 1.2 The testing points

{xtm,m = 1, 2, . . . , Nt} are also selected by Latin Hypercube sampling in region [0.95S1, 1.05S1]×

[0.95S2, 1.05S2]× · · · × [0.95Sd, 1.05Sd] ⊂ Rd. Here, we set Nt = 20.

Table 1: Parameter setting

d = 2 d = 4 d = 6

S (105,100) (105,100,95,105) (106,95,103,102,100,105)

σ (0.3,0.4) (0.3,0.4,0.3,0.2) (0.3,0.4,0.2,0.3,0.2,0.3)

n 1000/100 5000/500 20000/2000

N 20 30 40

T 1

r 0.03

K 100

2This table summarizes all the parameters for geometric average and arithmetic average basket option. In most
of the cases, these two basket options share the same parameters except the sample size n. The sample sizes n that
we need for geometric average and arithmetic average basket options are different. The number before the slash is
for the arithmetic average basket option, and the number after the slash is for the geometric average basket option.
In the arithmetic average basket option, n is larger because we need the sample mean of the gamma matrix to be
positive definite.
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4.3 Experiment results

First, we compare the EE and IM methods. Specifically, for IM, we consider three matrix operators,

trace (denoted by IM-tr), maximum eigenvalue (denoted by IM-eig), and determinant (denoted by

IM-det). Consider the geometric average basket call option with two underlying assets (d = 2),

and fix a testing point xt = S = (105, 100). We replicate the experiment R = 20 times, then plot

the results in Figure 1. It shows the boxplot of the elements, trace, and eigenvalue of the gamma

estimation results. The solid black line is the true value we want to estimate. Four methods are

compared: EE, IM-tr, IM-eig, and IM-det. This figure indicates that all the methods perform well

in estimating the gamma matrix.

Then, we consider d = 4, and compare the performances of these methods on the given testing

points. For a summary presentation of the results, we calculate the relative bias (rBias), the relative

standard deviation (rSD), and the relative root mean square error (rRMSE) of the prediction over

the testing points, which are defined as (for the (i, j)th element)

rBias(i, j) =
1

NtR

Nt∑
m=1

R∑
r=1

∣∣∣∣∣Φ̂r
i,j(x

t
m)− Φi,j(x

t
m)

Φi,j(xtm)

∣∣∣∣∣ ,

rSD(i, j) =
1

Nt

Nt∑
m=1

√
1
R

∑R
r=1

(
Φ̂r
i,j(x

t
m)− 1

R

∑R
r=1 Φ̂r

i,j(x
t
m)
)2

|Φi,j(xtm)|
,

rRMSE(i, j) =
1

Nt

Nt∑
m=1

√
1
R

∑R
r=1

(
Φ̂r
i,j(x

t
m)− Φi,j(xtm)

)2

|Φi,j(xtm)|
,

where Φ̂r
i,j(x

t
m) is the predicted gamma at the mth testing point in the rth replication of the

experiment. The gamma estimation performance of overall surfaces measured by rBias, rSD, and

rRMSE. Table 2 shows the element estimation performance of geometric average gamma matrices

with 4 underlying assets by replicating the experiment 20 times. Testing points are randomly

selected by Latin Hypercube sampling. According to rRMSE, the top performance is marked as

bold comparing among four methods: EE, IM-tr, IM-eig, and IM-det. This table shows that the

rBias, rSD, and rRMSE of all the proposed methods are small in most cases. And the larger

estimation error for diagonal entries of gamma may result from the fact that their true values are
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relatively close to zero in this setting. Notice that EE costs a long computation time since it needs

to conduct MLEs and stochastic kriging procedures many times. So based on the results in this

experiment, the IM-based methods are more appealing in fitting the gamma matrix surface.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

−3

EE IM−tr IM−eig IM−det

G
a

m
m

a
(1

,1
)

 

 

True value

4

4.5

5

5.5

6

6.5

x 10
−3

EE IM−tr IM−eig IM−det

G
a

m
m

a
(1

,2
)

 

 

True value

1.8

2

2.2

2.4

2.6

2.8

3
x 10

−3

EE IM−tr IM−eig IM−det

G
a

m
m

a
(2

,2
)

 

 

True value

3

3.5

4

4.5

5

5.5

6
x 10

−3

EE IM−tr IM−eig IM−det

T
ra

c
e

 

 

True value

6

6.5

7

7.5

8

8.5

x 10
−3

EE IM−tr IM−eig IM−det

M
a

x
 e

ig

 

 

True value

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2
x 10

−3

EE IM−tr IM−eig IM−det

M
in

 e
ig

 

 

True value

Figure 1: Boxplots of the gamma estimation in the geometric average basket option(d = 2)

Table 2: Gamma estimation of Geometric average call basket option with 4 underlying assets

rBias(%) rSD(%) rRMSE(%)
EE IM-

tr
IM-
eig

IM-
det

EE IM-
tr

IM-
eig

IM-
det

EE IM-
tr

IM-
eig

IM-
det

(1,1) 9.62 9.62 9.43 9.64 11.05 10.97 10.96 10.98 14.65 14.60 14.47 14.62
(2,1) 2.74 2.74 2.75 2.74 2.70 2.67 2.70 2.66 3.87 3.84 3.88 3.84
(2,2) 10.28 10.25 10.19 10.29 10.07 10.07 10.05 10.08 14.47 14.44 14.39 14.48
(3,1) 2.68 2.68 2.68 2.67 2.60 2.57 2.60 2.54 3.74 3.72 3.74 3.69
(3,2) 3.24 3.23 3.21 3.24 1.94 1.94 1.92 1.94 3.79 3.79 3.76 3.79
(3,3) 9.66 9.67 9.57 9.67 11.27 11.28 11.21 11.26 14.87 14.88 14.76 14.86
(4,1) 2.74 2.74 2.76 2.74 2.72 2.69 2.72 2.69 3.87 3.85 3.88 3.85
(4,2) 3.19 3.19 3.18 3.19 1.84 1.84 1.80 1.84 3.70 3.70 3.67 3.70
(4,3) 2.93 2.94 2.92 2.95 2.62 2.61 2.60 2.62 3.94 3.95 3.92 3.96
(4,4) 14.87 14.85 14.60 14.87 18.30 18.24 18.16 18.29 23.59 23.53 23.31 23.59

Next, we consider the arithmetic average basket call option, and compare EE, IM-tr, IM-

eig, IM-det, and the methods with Cholesky decomposition. Specifically, we consider Chol-EE
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(Cholesky decomposition with element-by-element), Chol-tr (Cholesky decomposition with IM via

trace), Chol-eig (Cholesky decomposition with IM via maximum eigenvalue), Chol-det (Cholesky

decomposition with IM via determinant). Similar to the geometric average basket option, we first

let d = 2, and fix a testing point xt = S = (105, 100). We replicate the experiment R = 20

times, then plot the results in Figure 2. This figure shows the boxplot of the elements, trace,

and eigenvalue of the gamma estimation results. The solid black line is the true value we want

to estimate. Six methods are compared: EE, IM-tr, Chol-EE, Chol-tr, Chol-eig, Chol-det. This

figure indicates that all the methods can provide good estimation of the gamma matrix.
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Figure 2: Boxplots of gamma estimation in the arithmetic-average basket option(d = 2)

Then, we consider d = 4 and d = 6. The results are still presented in terms of rBias, rSD, and

rRMSE on all the testing points in Table 3 and Table 4. Table 3 and Table 4 show the element

estimation performance of arithmetic average gamma matrices with 4 and 6 underlying assets by

replicating the experiment 20 times. According to rRMSE, the top performance is marked as bold

comparing among six methods: EE, IM-tr, Chol-EE, Chol-tr, Chol-eig, Chol-det. Similar to the

results in the geometric average basket option, all the methods perform well in the estimation, and

rBias, rSD, and rRMSE are small. Among all the methods, Chol-tr performs best in this example.

In addition, we know that the methods with Cholesky decomposition can guarantee the esti-

mated matrix to be positive definite. While if we use EE and IM-tr, some of the estimated matrices
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may not be positive definite. So we define the average violation rate (aVR), that is, the percentage

of the estimated matrices to be non-positive definite, which is given by

aV R = 1− 1

NtR

Nt∑
m=1

R∑
r=1

1
{

Φ̂r(xtm) is positive definite
}
.

Then we can obtain Table 5, which tells us that the non-positive definite cases for EE and IM-

tr indeed happen. Although most of the cases are positive definite, we can still observe the

violated results. Based on Table 5, IM outperforms EE from the viewpoint of maintaining positive

definiteness.

Table 3: Gamma estimation of Arithmetic-mean call basket option with 4 underlying assets

rBias(%) rSD(%) rRMSE(%)
EE IM-tr Chol-

EE
EE IM-tr Chol-

EE
EE IM-tr Chol-

EE
(1,1) 1.97 1.97 1.95 2.60 2.61 2.57 3.27 3.28 3.22
(2,1) 2.66 2.46 2.27 3.56 3.37 3.04 4.45 4.17 3.80
(2,2) 1.71 1.71 1.49 2.35 2.35 1.85 2.91 2.91 2.38
(3,1) 2.02 2.13 1.95 2.68 2.81 2.47 3.36 3.53 3.15
(3,2) 1.49 1.65 1.62 1.89 2.20 2.06 2.41 2.76 2.63
(3,3) 2.03 2.16 1.98 2.53 2.67 2.48 3.25 3.44 3.18
(4,1) 1.95 1.95 1.82 2.66 2.66 2.41 3.30 3.30 3.02
(4,2) 1.43 1.58 1.60 1.80 2.10 2.02 2.30 2.63 2.58
(4,3) 2.10 2.08 1.83 2.63 2.61 2.30 3.37 3.34 2.94
(4,4) 2.06 2.05 2.07 2.66 2.62 2.69 3.36 3.33 3.39

Chol-
tr

Chol-
eig

Chol-
det

Chol-
tr

Chol-
eig

Chol-
det

Chol-
tr

Chol-
eig

Chol-
det

(1,1) 1.19 1.76 1.81 1.53 2.32 2.39 1.94 2.91 3.00
(2,1) 1.48 2.24 2.31 1.91 3.07 3.19 2.42 3.80 3.94
(2,2) 1.12 1.45 1.49 1.25 1.81 1.86 1.68 2.32 2.38
(3,1) 1.34 1.95 2.01 1.69 2.58 2.67 2.15 3.23 3.34
(3,2) 1.14 1.54 1.57 1.31 1.89 1.94 1.74 2.44 2.50
(3,3) 1.39 2.01 2.09 1.70 2.55 2.66 2.20 3.25 3.38
(4,1) 1.24 1.81 1.86 1.63 2.47 2.55 2.05 3.07 3.16
(4,2) 1.05 1.42 1.46 1.23 1.78 1.84 1.62 2.28 2.36
(4,3) 1.36 2.01 2.07 1.68 2.62 2.73 2.16 3.30 3.44
(4,4) 1.51 2.23 2.30 1.91 2.88 2.98 2.44 3.64 3.77
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Table 4: Gamma estimation of Arithmetic-mean call basket option with 6 underlying assets

rBias(%) rSD(%) rRMSE(%)
EE IM-tr Chol-

EE
EE IM-tr Chol-

EE
EE IM-tr Chol-

EE
(1,1) 4.56 3.70 4.47 1.46 1.99 2.02 4.90 4.31 5.02
(2,1) 5.05 3.82 4.21 1.62 2.07 1.81 5.41 4.46 4.73
(2,2) 4.23 4.02 4.18 2.49 2.25 2.26 5.07 4.73 4.90
(3,1) 3.99 3.19 3.46 1.75 1.72 1.37 4.47 3.72 3.84
(3,2) 4.44 3.32 3.31 1.41 1.80 1.65 4.77 3.88 3.81
(3,3) 3.96 2.78 2.77 0.51 1.49 1.47 4.02 3.25 3.24
(4,1) 4.57 3.60 4.05 1.54 1.99 1.69 4.87 4.21 4.51
(4,2) 5.04 3.70 3.90 1.37 2.07 2.01 5.35 4.35 4.50
(4,3) 4.51 3.16 3.24 0.45 1.79 1.62 4.55 3.74 3.74
(4,4) 4.26 3.56 3.80 1.85 2.00 1.91 4.73 4.19 4.37

Chol-
tr

Chol-
eig

Chol-
det

Chol-
tr

Chol-
eig

Chol-
det

Chol-
tr

Chol-
eig

Chol-
det

(1,1) 3.36 3.57 3.69 1.78 2.03 1.96 3.92 4.22 4.32
(2,1) 3.49 3.69 3.86 1.88 2.10 2.10 4.10 4.37 4.55
(2,2) 3.66 3.88 4.10 2.04 2.33 2.33 4.36 4.66 4.91
(3,1) 2.91 3.07 3.19 1.58 1.74 1.70 3.42 3.63 3.74
(3,2) 3.06 3.18 3.40 1.66 1.87 1.85 3.60 3.79 4.01
(3,3) 2.57 2.72 2.81 1.40 1.53 1.49 3.03 3.22 3.29
(4,1) 3.27 3.48 3.59 1.81 2.01 1.95 3.85 4.13 4.22
(4,2) 3.38 3.56 3.76 1.88 2.12 2.10 4.01 4.26 4.47
(4,3) 2.90 3.08 3.18 1.64 1.78 1.76 3.45 3.67 3.77
(4,4) 3.26 3.48 3.61 1.79 2.01 1.99 3.86 4.14 4.27

Table 5: The average violation rate of positive semi-definiteness of EE and IM

2 underlying assets 4 underlying assets 6 underlying assets

aV R(%)
EE 5.00 5.50 4.25
IM 4.25 2.75 1.25

Based on the numerical examples in this subsection, we conclude that the IM-based methods

have a comparable estimation accuracy to EE. Moreover, the IM-based methods have a smaller

computational burden than EE, so we recommend the IM-based methods in fitting matrix surface.

Among the IM-based methods, IM-tr is more attractive than the other alternatives. If we consider

the positive definiteness, Chol-tr is recommended especially for basket option with a large number

of underlying assets. It has a low computational effort, and still maintains the positive definiteness

24



and the desirable estimation accuracy of the gamma matrix.

4.4 Delta-Gamma approximation

The delta-gamma approximation is used to duplicate the derivative price if the underlying stock

price changes via a quadratic function. The basic idea comes from the Taylor expansion that a

function can be approximated through its first- and second-order sensitivities. The delta-gamma

approximation is widely used in financial engineering research as well as in practice to hedge the

risk of derivatives and portfolios corresponding to the fluctuation of underlying stocks or some

other risk factors, see Glasserman et al. (2000). For example, Glasserman et al. (2000) derives a

variance reduction techniques for VaR starting from the delta-gamma approximation. We consider

a portfolio with multi-underlying assets, therefore, the gamma is a matrix.

Suppose that we have an arithmetic average basket call option whose price equals to P (Si−1)

given stock price Si−1 at time t. The approximation of option price P (Si) given Si at time t+ ∆t

is approximated by

P (Si) = P (Si−1) + ∆>δs +
1

2
δ>s Γδs, (12)

where δi = Si − Si−1 is a column vector that calculates the change in each underlying stock price

from time t to t+ ∆t, ∆ (delta) and Γ (gamma) are estimated at Si−1, i = 1, 2, . . . .

Obviously, a good accuracy of the estimated delta and gamma results in a good approximation.

In this example, the arithmetic average basket call option is considered, and we want to investigate

the performance of the delta-gamma approximation by using the estimated gamma via the pro-

posed methods. For the delta, we use the IPA estimator with sample size 5×106 as the true delta.

We consider the basket option with 4 underlying assets, and the parameters are the same as pre-

vious experiments. Here we randomly choose 10 testing points S1,S2, . . . ,S10 by Latin hypercube

sampling and we consider those points as the daily route of underlying price, i.e., δi = Si − Si−1,

i = 1, 2, . . . , 10. We fit the overall surface once and use the fitted gamma surface to track move-

ments of option price. Here, one-step-ahead prediction is used, and we replicate the procedure

R = 20 times.3 Table 6 shows the approximation results in detail. According to bias, standard

deviation and RMSE respectively, the top performance is marked as bold comparing among six

methods: EE, IM-tr, EE-Chol, Chol-tr, Chol-eig, Chol-det. The first row shows the true option

3Here, one-step-ahead prediction means we use true value of P (Si−1) in (12) instead of estimated value.
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prices for 10 days (10 testing points), and the bias, SD, and RMSE of the differences between

the estimated prices and the true prices for all the methods are calculated. The results indicate

that all the methods work well in the delta-gamma approximation. Considering the computational

burden and positive definiteness, Chol-tr is more attractive than other methods.

Table 6: The accuracy of delta-gamma approximation of basket option via matrix kriging methods
(d = 4)

TRUE 15.37 13.01 10.35 7.23 8.18 8.75 10.28 13.76 11.62 6.85 Average

bias
(10−2)

EE 1.26 2.88 0.42 1.74 0.04 1.27 1.04 1.41 0.95 4.37 1.54
IM-tr 1.31 2.92 0.78 1.74 0.00 1.24 1.06 1.39 1.00 4.21 1.57
Chol-EE 1.21 2.91 0.46 1.80 0.01 1.23 1.04 1.31 0.99 4.66 1.56
Chol-tr 1.14 2.73 0.53 1.82 0.08 1.23 1.03 1.44 0.80 4.68 1.55
Chol-eig 1.15 2.65 0.58 1.77 0.07 1.25 1.02 1.47 0.76 4.83 1.56
Chol-det 1.16 2.63 0.49 1.76 0.07 1.22 1.04 1.38 0.78 4.82 1.54

SD
(10−2)

EE 0.61 1.19 1.82 0.30 0.35 0.60 0.40 0.50 0.81 1.64 0.82
IM-tr 0.32 1.15 1.31 0.31 0.32 0.19 0.29 0.50 0.85 1.68 0.69
Chol-EE 0.36 1.11 1.25 0.37 0.37 0.24 0.38 0.50 0.91 1.61 0.71
Chol-tr 0.34 1.10 1.22 0.38 0.39 0.21 0.35 0.60 0.80 1.52 0.69
Chol-eig 0.34 1.19 1.11 0.41 0.37 0.19 0.36 0.65 0.88 1.64 0.72
Chol-det 0.34 1.22 1.26 0.37 0.37 0.22 0.33 0.54 0.89 1.72 0.73

RMSE
(10−2)

EE 1.40 3.11 1.87 1.77 0.36 1.41 1.12 1.50 1.25 4.67 1.84
IM-tr 1.35 3.14 1.52 1.77 0.32 1.25 1.10 1.48 1.31 4.53 1.78
Chol-EE 1.26 3.11 1.34 1.84 0.37 1.25 1.10 1.40 1.35 4.93 1.80
Chol-tr 1.19 2.94 1.33 1.86 0.40 1.25 1.09 1.56 1.13 4.92 1.77
Chol-eig 1.20 2.91 1.26 1.82 0.38 1.26 1.08 1.60 1.16 5.10 1.78
Chol-det 1.21 2.90 1.35 1.80 0.38 1.24 1.09 1.48 1.18 5.12 1.78

5 Conclusion

In this paper, we propose several matrix kriging methods for fitting the gamma matrix surface,

which is used in real-time risk management. We first derive the element-by-element method,

which treats the element in the matrix separately, and use stochastic kriging to obtain the surface

of each element of the matrix. To overcome the challenge of high computational burden for large-

dimensional matrices, the importance mapping method is proposed, and its theoretical properties

are investigated. To maintain the positive definiteness of the matrices, the Cholesky decomposition

method is proposed. Taking basket call options as examples, we study the effectiveness of the

26



proposed methods. The importance mapping-based method turns out to have more desirable

estimation results than other methods. In the future research, we may consider how to combine

first- and second-order Greeks together to improve the accuracy of the estimation of both the first-

and second-order Greeks. On the other hand, the efficient selection algorithm can be considered

to enhance the performance of gamma estimation further.

Acknowledgement

The research reported in this paper is partially supported by Hong Kong Research Grants Coun-

cil Grant [GRF 16203214, 11504017], National Natural Science Foundation of China [Grants

71801148], and Shanghai Young Eastern Scholar Program [N.60-D129-18-202].

References

Ankenman, B., Nelson, B. L., and Staum, J. (2010). Stochastic kriging for simulation metamod-

eling. Operations Research, 58:371–382.

Björk, T. (2009). Arbitrage Theory in Continuous Time. Oxford University Press.

Broadie, M. and Glasserman, P. (1996). Estimating security price derivatives using simulation.

Management Science, 42:269–285.

Chen, X., Ankenman, B., and Nelson, B. L. (2013). Enhancing stochastic kriging metamodels with

gradient estimators. Operations Research, 61:512–528.

Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York, NY.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall/CRC,

New York.

Elie, R., Fermanian, J. D., and Touzi, N. (2007). Kernel estimation of greek weights by parameter

randomization. The Annals of Applied Probability, 17:1399–1423.

Fu, M. C. (2006). Gradient estimation. Handbooks in Operations Research and Management

Science, 13:575–616.

27



Fu, M. C. and Hu, J. Q. (1997). Conditional Monte Carlo: Gradient Estimation and Optimization

Applications. Kluwer Academic Publishers, Norwell, MA.

Glasserman, P. (2013). Monte Carlo Methods in Financial Engineering. Springer Science & Busi-

ness Media, New York, NY.

Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000). Variance reduction techniques for

estimating Value-at-Risk. Management Science, 46:1349–1364.

Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems. Communications

of the ACM, 33(10):75–84.

Heidergott, B., Vazquez-Abad, F., Pflug, G., and Farenhorst-Yuan, T. (2010). Gradient estimation

for discrete-event systems by measure-valued differentiation. ACM Transactions on Modeling

and Computer Simulation, 20(1):No. 5.

Ho, Y. C. and Cao, X. (1983). Perturbation analysis and optimization of queueing networks.

Journal of Optimization Theory and Applications, 40:559–582.

Hong, L. J. and Jiang, G. (2018). Offline simulation online application: A new framework of

simulation-based decision making. Under review.

Jiang, G., Hong, L. J., and Nelson, B. L. (2019). Online risk monitoring using offline simulation.

INFORMS Journal on Computing. Forthcoming.

Kleijnen, J. P. C. (2009). Kriging metamodeling in simulation: A review. European Journal of

Operational Research, 192:707–716.

Liu, G. and Hong, L. J. (2011). Kernel estimation of the greeks for options with discontinuous

payoffs. Operations Research, 59:96–108.

Meyer, C. D. (2013). Matrix Analysis and Applied Linear Algebra. Cambridge University Press,

Philadelphia, PA.

Peng, Y. J., Fu, M. C., Hu, J. Q., and Heidergott, B. (2018). A new unbiased stochastic deriva-

tive estimator for discontinuous sample performances with structural parameters. Operations

Research, 66(2):487–499.

28



Pflug, G. C. (1989). Sampling derivatives of probabilities. Computing, 42:315–328.

Reiman, M. I. and Weiss, A. (1989). Sensitivity analysis for simulations via likelihood ratios.

Operations Research, 37(5):830–844.
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Appendix

A Property Violation of EE: An example

Element-by-Element method is sometimes accompanied with violation of positive definiteness for

gamma estimation even by simple kriging (Cressie 1993). A specific example is shown. Consider

a arithmetic average call basket option with two underlying asset S1 and S2. We set strike price

K = 100, risk-free interest rate r = 3%, and expiry date T = 1. The discounted expected payoff

function of this basket option is set as

P = e−rTE

(1

d

d∑
i=1

Si(T )−K

)+
 .

By Latin Hypercube sampling, we randomly choose 6 design points

x1 = [107.49; 102.27],x2 = [104.43; 98.78],x3 = [105.23; 97.10],

x4 = [101.04; 100.19],x5 = [102.31; 95.21],x6 = [108.56; 104.78],

and estimate the response matrix at each design point n = 150 times. By calculation the sample

mean of estimated gamma are all positive-definite, with positive minimum eigenvalue λmin1 =

4.06 × 10−4, λmin2 = 6.69 × 10−4, λmin3 = 3.75 × 10−4, λmin4 = 4.41 × 10−4, λmin5 = 4.34 × 10−4,

λmin6 = 4.83 × 10−4. As a special case, we let testing point x0 = [110.25; 100] and apply ordinary

kriging to 6 design points above to predict the response gamma matrix at x0. It turns out that

the prediction

Φ̂(x0) =

(
3.56× 10−3 3.96× 10−3

3.96× 10−3 3.16× 10−3

)
is not positive with minimum eigenvalue λmin0 = −5.88 × 10−4. However, one can prove that the

gamma matrix should be positive semidefinite for convex payoff mathematically.

B Proof of Theorem 1

Proof. Recall that Π̄ = (Π̄(x1), Π̄(x2), . . . , Π̄(xN)), and

Π̄(xi) = βI0 + MI(xi) + ε̄I(xi),
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where ε̄I(xi) = 1/ni
∑ni

h=1 ε
h
I (xi). Since εhI (xi) is normal distribution, so the estimated variance

given by (8) is independent of ε̄I(xi). So

E
[̂̂π(x0)

]
= E

E
(ΣMI

(x0, ·) + 1N
1− 1>N(ΣMI

+ Σ̂εI )
−1ΣMI

(x0, ·)
1>N(ΣMI

+ Σ̂εI )
−11N

)>
(ΣMI

+ Σ̂εI )
−1Π̄

∣∣∣∣∣∣ Σ̂εI


= E

(ΣMI
(x0, ·) + 1N

1− 1>N(ΣMI
+ Σ̂εI )

−1ΣMI
(x0, ·)

1>N(ΣMI
+ Σ̂εI )

−11N

)>
(ΣMI

+ Σ̂εI )
−11NβI0


= βI0E

[
ΣMI

(x0, ·)>(ΣMI
+ Σ̂εI )

−11N + 1− 1>N(ΣMI
+ Σ̂εI )

−1ΣMI
(x0, ·)

]
= βI0.

Therefore E[̂̂π(x0)− π(x0)] = βI0 − βI0 = 0.

C Proof of Theorem 2

Proof. According to the proof of Theorem 1,

ŵ∗(x0)>1N =

(
ΣMI

(x0, ·) + 1N
1− 1>N(ΣMI

+ Σ̂εI )
−1ΣMI

(x0, ·)
1>N(ΣMI

+ Σ̂εI )
−11N

)>
(ΣMI

+ Σ̂εI )
−11N = 1. (13)

Ψ is a linear mapping such that π(x) =
∑d

i=1

∑d
j=1 ui,jΦi,j(x). According to Assumption 2, sample

variance at each design point given by

V̂ (xk) =
1

nk − 1

nk∑
h=1

(
d∑
i=1

d∑
j=1

ui,jε
h
i,j(xk)−

d∑
i=1

d∑
j=1

ui,j ε̄i,j(xk)

)2

(14)

is independent of the each coordinate in H̄i,j for all i and j, then

E[Φ̂i,j(x0)] = E[ŵ∗(x0)>H̄i,j] = E[ŵ∗(x0)>E[H̄i,j|Σ̂εI ]] = βi,jE[ŵ∗(x0)>1] = βi,j.

Therefore, E[Φ̂i,j(x0)− Φi,j(x0)] = 0.

D SPA estimators realization of gamma of arithmetic av-

erage basket call option

We consider an arithmetic average basket call option with two underlying stocks following geo-

metric Brownian motion, whose initial value S0 = [105, 100]>, volatility σ = [0.3, 0.4]>, strike
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price K = 100 and expiry time T = 1. Here, it is to show that the gamma matrix of arithmetic

average basket call option, whose elements are calculated by the SPA estimator in (16), cannot

maintain positive definite for all generated sample path of stock price at time T , denoted by

S(T ) = (S1(T ), S2(T ))>. For example, if we let S(T ) = (113, 56)>, then the realization of the SPA

estimator is

Γ̂ =

(
4.58× 10−3 5.08× 10−3

5.08× 10−3 4.11× 10−3

)
,

and the minimum eigenvalue is −7.38 × 10−4. If we let S(T ) = (90, 109)>, the realization of the

SPA estimator is

Γ̂ =

(
4.86× 10−3 3.88× 10−3

3.88× 10−3 4.98× 10−3

)
,

and the minimum eigenvalue is 8.81× 10−3.

E SPA estimator of gamma of geometric average basket

call option

The expected payoff function of basket option is

cG = e−rTE
[(

d
√
S1(T )S2(T ) · · ·Sd(T )−K

)
1{ d
√∏d

k=1 Sk(T )>K}

]
,

Let

Y G =
(

d
√
S1(T )S2(T ) · · ·Sd(T )−K

)
1{ d
√∏d

k=1 Sk(T )>K}.

Note that Y G is Lipchitz continuous, thus we can interchange the expectation and derivative, i.e.,

∂E(Y G)/∂Si(0)
= E

[
∂Y G/∂Si(0)

]
= E

[
d
√
S1(T )S2(T )···Sd(T )

dSi(0)
1{ d
√
S1(T )S2(T )···Sd(T )>K}

]
= E

[
E
(

d
√
S1(T )S2(T )···Sd(T )

dSi(0)
1{ d
√∏d

k=1 Sk(T )>K}

∣∣∣∣Sk(T ), k 6= i

)]
= E

[
d
√∏d

k 6=i Sk(T )

d
E

(
(Si(T ))1/d

Si(0)
1{Si(T )>Kd/

∏d
k 6=i Sk(T )}

∣∣∣∣Sk(T ), k 6= i

)]
= E

[
d
√∏d

k 6=i Sk(T )

n

∫∞
K/

∏d
k 6=i Sk(T )

(Si(T ))1/n

Si(0)
dF (Si(T ))

]
= E

 d
√∏d

k 6=i Sk(T )

dSi(0)

E[(Si(T ))1/d]−
∫ Kd∏d

k 6=i Sk(T )

0 (Si(T ))1/ddF (Si(T ))


= E

 d
√∏d

k 6=i Sk(T )

dSi(0)

(Si(0))1/de
(r−1/2σ2i )T

d
+
σ2i T

2d2 −
∫ Kd∏d

k 6=i Sk(T )

0 (Si(T ))1/ddF (Si(T ))

 .
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Let

Π =

d

√∏d
k 6=i Sk(T )

dSi(0)

(Si(0))1/de
(r−1/2σ2i )T

d
+
σ2i T

2d2 −
∫ Kd∏d

k 6=i Sk(T )

0

(Si(T ))1/ddF (Si(T ))

 .

Therefore, the SPA estimator of the diagonal element in the gamma matrix is

Γ̂G(i, i) = ∂Π
∂Si(0)

= 1
d2(Si(0))2

d

√∏n
k 6=i Sk(T )e

µG

d
+

(σG)
2

2d2 (1− d)(Si(0))1/d

+
d
√∏d

k 6=i Sk(T )

d(Si(0))2

∫ Kn/
∏n
k 6=i Sk(T )

0
x1/d−1

σG
φ
(

log(x/(Si(0)))−µG
σG

) [
1− log(x/Si(0))−µG

(σG)2

]
dx,

where µG = (r − 1/2σ2
i )T and σG = σ2

i T . Similarly, for any j 6= i, we have

∂E(Y G)
∂Si(0)

= E
[

∂Y
∂Si(0)

]
= E

[
d
√
S1(T )S2(T )···Sd(T )

dSi(0)
1{ d
√∏d

k=1 Sk(T )>K}

]
= E

 d
√∏d

k 6=j Sk(T )

dSi(0)

E[(Sj(T ))1/d]−
∫ Kd∏d

k 6=j Sk(T )

0 (Sj(T ))1/ddF (Sj(T ))

 .
Let

Π =

d

√∏d
k 6=j Sk(T )

dSi(0)

(
(Sj(0))1/de

(r−1/2σ2j )T

n
+
σ2j T

2n2 −
∫ Kn∏n

k 6=j Sk(T )

0

(Sj(T ))1/ddF (Sj(T ))

)
.

Then, if we take derivative with respect to Sj(0) , we have the SPA estimator for non-diagonal

elements,

Γ̂G(i, j) = ∂Π
∂Sj(0)

=
d
√∏d

k 6=j Sk(T )

dSi(0)Sj(0)

[
e
µG

d
+

(σG)2

2d2 (Sj(0))1/d

−
∫ Kd∏d

k 6=j Sk(T )

0
x1/d−1

(σG)3
φ
(

log(x/(Sj(0)))−µG
σG

) (
log(x/Sj(0))− µG

)
dx

]
.

F SPA estimator of gamma of arithmetic average basket

call option

Let the payoff of basket option be

Y A =

(
1

d

d∑
i=1

Si(T )−K

)
1{ 1

d

∑d
i=1 Si(T )>K}.
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Note that Y A is Lipchitz continuous.

∂E(Y A)
∂Si(0)

= E
[
∂Y A

∂Si(0)

]
= E

[
Si(T )
dSi(0)

1{ 1
d

∑d
i=1 Si(T )>K}

]
= E

[
E
(

Si(T )
dSi(0)

1{ 1
d

∑d
i=1 Si(T )>K}

∣∣∣∣Sk(T ), k 6= i

)]
= E

[
1

dSi(0)

∫∞
dK−

∑
k 6=i Sk(T )

Si(T )dF (Si(T ))
]

by conditioning on Sk(T ) for i 6= k. Here, F (Si(T )) denotes the cumulative distribution function

of Si(T ), which is a normal distribution. If dK ≥
∑

k 6=i Sk(T ), then

∂2E(Y A)
∂Si(0)2

= ∂
∂Si(0)

E
[

1
dSi(0)

∫∞
dK−

∑
k 6=i Sk(T )

Si(T )dF (Si(T ))
]

= E
[

∂
∂Si(0)

(
1

dSi(0)

∫∞
dK−

∑
k 6=i Sk(T )

Si(T )dF (Si(T ))
)]

= 1
n(Si(0))2σi

√
T

∫ nK−∑k 6=i Sk(T )

0 φ
(
ρ(Si(0))
σA

) [
1− ρ(Si(0))

(σAi )2

]
dx,

where φ(·) is the standard normal density function and

ρ(Si(0)) = log(x/Si(0))− µAi T,

µAi = r − 1/2σ2
i , and σAi = σi

√
T , i = 1, 2, . . . , d.

If dK <
∑

k 6=i Sk(T ), then

∂E(Y )

∂Si(0)
=
erT

d
.

So the second order gradient is zero.The SPA estimator for diagonal element is

Γ̂(i, i) =

{
1

d(Si(0))2σAi

∫ Ui
0
φ
(
ρ(Si(0))

σAi

) [
1− ρ(Si(0))

(σAi )2

]
dx, dK ≥

∑
k 6=i Sk(T )

0, dK <
∑

k 6=i Sk(T )
(15)

where

Ui = dK −
∑
k 6=i

Sk(T ).

For any j 6= i, we have

∂E(Y A)
∂Si(0)

= E
[
∂Y A

∂Si(0)

]
= E

[
Si(T )
dSi(0)

1{ 1
d

∑d
i=1 Si(T )>K}

]
= E

[
E
(

Si(T )
dSi(0)

1{ 1
d

∑d
i=1 Si(T )>K}

∣∣∣∣Sk(T ), k 6= j

)]
= E

[
Si(T )
dSi(0)

∫∞
Uj
dF (Sj(T ))

]
.

If dK ≥
∑

k 6=j Sk(T ), then

∂E(Y A)
∂Si(0)

= E
[
Si(T )
dSi(0)

(
1−

∫ Uj
0
dF (Sj(T ))

)]
= E

[
Si(T )
nSi(0)

− Si(T )
nSi(0)

Φ
(

log(Uj)−log(Sj(0))−(r−1/2σ2
j )T

σj
√
T

)]
.
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Take derivative with respect to Sj(0),

∂2E(Y A)
∂Si(0)∂Sj(0)

= E
[

∂
∂Sj(0)

(
Si(T )
nSi(0)

− Si(T )
nSi(0)

Φ
(

log(Uj)−log(Sj(0))−(r−1/2σ2
j )T

σj
√
T

))]
= E

[
Si(T )

dσj
√
TSi(0)Sj(0)

φ
(

log(Uj)−log(Si(0))−(r−1/2σ2
j )T

σj
√
T

)]
.

If dK ≥
∑

k 6=j Sk(T ), then

∂E(Y )

∂Si(0)
=

Si(T )

dSi(0)
.

The SPA estimator is

Γ̂(i, j) =

{
Si(T )

dσAj Si(0)Sj(0)
φ
(

log(Uj)−log(Si(0))−µAj T
σAj

)
, dK ≥

∑
k 6=i Sk(T )

0, dK <
∑

k 6=i Sk(T )
. (16)

G Analytical formula of the gamma of geometric average

basket call option

According to settings in numerical experiment, there are underlying stocks for the geometric-mean

basket call option. And we assume that each underlying stock follows Si ∼ GBM(µ, σ2
i ). Let

S̃T = n
√
S1(T )S2(T ) · · ·Sn(T ), we have

log(S̃T ) = 1
d

∑n
i=1 log(Si(T ))

= 1
d

∑d
i=1

[
log(Si(0) + (µ− 1

2
σ2
i )T + σiBi(T )

]
= 1

d

∑d
i=1 log(Si(0)) + 1

d

∑d
i=1(µ− 1

2
σ2
i )T + 1

d

∑d
i=1 σiBi(T ).

For any i, j ∈ {1, 2, . . . , d}, i 6= j, we have Cov(Bi(t), Bj(t)) = 0. Accordingly,

V ar

[
d∑
i=1

σiBi(T )

]
=

d∑
i=1

V ar[σiBi(T )] =
d∑
i=1

σ2
i T.

So, fix T ,

1

d

d∑
i=1

σiBi(T ) ∼ Φ

(
0,

1

d2

d∑
i=1

σ2
i T

)
.

Then we have

S̃T = d
√
S1(0)S2(0) · · ·Sd(0)e(µ− d

2
σ̃2)T+σ̃

√
TZ ,

where

σ̃2 =
1

d2

d∑
i=1

σ2
i .
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Therefore, S̃T has the distributionGBM
([
r − (d

2
σ̃2 − 1

2
σ̃2)
]
, σ̃2
)

under the risk-neutral framework.

And the value at time zero is

S̃0 = e−rTE[S̃T ] = d
√
S1(0)S2(0) · · ·Sd(0)e−( d

2
σ̃2T− 1

2
σ̃2T ).

Its European call option is given by the Black-Scholes formula,

cG = S̃0Φ(d1)−Ke−rTΦ(d2),

where

d1,2 =
log S̃0/K + (r ± 1

2
σ̃2)T

σ̃
√
T

,

i.e., the pricing formula for geometric-mean basket option is as follow,

cG = e−
d−1
2
σ̃2T d
√
S1(0) · · ·Sd(0)Φ(

log ( d
√
S1(0)···Sd(0)/K)+(r− d−2

2
σ̃2)T

σ̃
√
T

)

− Ke−rTΦ(
log ( d
√
S1(0)···Sd(0)/K)+(r− d

2
σ̃2)T

σ̃
√
T

).

Specifically, let n = 2, the basket option is then a spread option and the pricing formula is as

follow,

cG = e−
1
2
σ̃2T
√
S1(0)S2(0)Φ(

log (
√
S1(0)S2(0)/K)+rT

σ̃
√
T

)

− Ke−rTΦ(
log (
√
S1(0)S2(0)/K)+(r−σ̃2)T

σ̃
√
T

),

where

σ̃2 =
1

4
(σ2

1 + σ2
2),

that is, the pricing formula for geometric-mean basket option is as follow,

∂cG

∂Si(0)
=

d
√
S1(0) · · ·Sd(0)e−

d−1
2
σ̃2T

dSi(0)

[
Φ(d1) +

φ(d1)

σ̃
√
T

]
− e−rTK

dσ̃
√
TSi(0)

φ(d2).

Then it follows the second-order derivative, for any i = 1, 2, · · · , n and any j 6= i.

∂2cG

∂Si(0)2
=

e−
d−1
2 σ̃2T d

√∏d
j=1 Sj(0)

(dSi(0))2

[
(1− d)Φ(d1) + 2−d

σ̃
√
T
φ(d1)− d1

σ̃2T
φ(d1)

]
+ e−rTKφ(d2)

nσ̃
√
T (Si(0))2

(
1 + d2

dσ̃
√
T

)
and

∂2cG

∂Si(0)∂Sj(0)
=

e−
d−1
2 σ̃2T d

√∏d
k=1 Sk(0)

d2Si(0)Sj(0)

[
Φ(d1) + φ(d1)

σ̃
√
T

(
2− d1

σ̃
√
T

)]
+ e−rTKd2

n2σ̃2TSi(0)Sj(0)
φ(d2).

They correspond to the diagonal elements and non-diagonal elements of gamma ΓG . Basically,

we apply the above expression for calculating true value of gamma we want to estimate via proposed

methods.
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