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Abstract

In this note, a general framework is proposed for using importance splitting to estimate rare event probabilities

with finite time constraints. We prove that the splitting estimator is unbiased and characterize the optimal splitting

curves. A new unbiased estimator with truncated sample paths is proposed to improve computational efficiency, and

a pilot algorithm is provided to determine the optimal truncation and splitting curves. Numerical examples illustrate

the optimality of the splitting curves and the effectiveness of the new estimator.
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I. INTRODUCTION

Estimating rare event probabilities via simulation, which has important applications in various types of networks,

electrical power systems, and financial industries (e.g., [1], [2] and [3]), is challenging because the relative error

of consistent or unbiased estimators diverges to infinity as the rare event probability tends to zero; see [4] and

[5] for more details. As a result, variance reduction techniques are essential for making rare event estimation

computationally practical. Importance splitting is a variance reduction technique that attempts to generate more

paths with the potential to hit the rare event set; see [6], [4], [7], [8], [9], and a related method RESTART [10].

Recent work includes [1], [5], [11], [12], [13], [14], [15], [16] and [17]. Importance splitting has broad applicability,

since less distributional information for the model is needed compared with importance sampling, although the latter

is generally more efficient.

Most work on importance splitting focuses on estimating the probability of hitting a set without time constraints,

where the underlying process is a discrete state space Markov process. When a simulated path hits a splitting

level, which is determined by a so-called importance function, the path splits a given number of times. [6] and

[4] investigated the asymptotic properties of the splitting method in the fixed splitting setting. [7] provided more

details in choosing the importance function and implementation in both fixed splitting and fixed effort settings.

[5] proposed a fixed number of successes setting and provided a way to estimate the importance function. The

efficiency of such methods is highly dependent on the choice of the importance function, which may be difficult

to determine. The setting in this note considers the probability of hitting a set prior to a given constant time, for

which the classical methods for choosing the optimal splitting levels would require state augmentation, leading to a

higher-dimensional problem. The finite-time setting has many applications. For example, in risk management, this
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finite time may be the date at which a portfolio loss risk needs to be reported to shareholders. This note is the

first work to explicitly address importance splitting and truncation in the finite-time setting directly without state

augmentation. We propose a framework for Markov processes to estimate rare event probabilities, and provide new

conditions for optimal splitting and truncation curves in the finite-time setting. Variants of splitting estimators for

the classical settings include fixed splitting [4], fixed effort [7], and fixed number of successes [5]. In this note, we

consider both fixed splitting and fixed effort estimators. Truncation techniques have been applied to the classical

setting in [18] and [4] (refer to [19] for a survey), whereas we propose a new unbiased truncated estimator in the

finite-time setting.

The rest of the note is organized as follows. In Section II, we construct the framework for estimating rare event

probabilities in finite time via importance splitting, and provide properties of the splitting estimator and conditions

for optimal splitting curves. In Section III, we propose a new truncated estimator and characterize its properties.

In Section IV, we propose a pilot algorithm to estimate the optimal splitting and truncation curves. In Section

V, numerical examples illustrate the optimality of the splitting curves and the effectiveness of the new estimator.

Section VI concludes.

II. IMPORTANCE SPLITTING

Let {Xt, t ≥ 0} be a continuous-time continuous-state Markov process, and f be a real-valued measurable

continuous function, with Zt := f(Xt) the performance of underlying process Xt. Let x0 be the initial value

of {Xt, t ≥ 0}. Let l denote the rare event level, and the goal is to estimate the probability Pr{τ < ξ}, where

τ = inf{t ≥ 0|Zt ≥ l}, and in the classical settings ([4], [6], [7]), ξ is the first time that the path {Zt} re-enters a

given set, e.g., ξ = inf{t > 0|Zt ≤ l0} for some fixed l0 � l.

However, in practice, another important setting is where the evolution of the underlying process is terminated by

some constant time ξ = T , and the objective is to estimate the rare event probability γ = Pr{τ < T}. For example,

Zt = f(Xt) could be a financial portfolio, and we are interested in estimating the probability that the portfolio

defaults before some maturity date. Although [5] mentions the stopping rule τ < T when proving the unbiasedness

of the splitting estimator, they provide no analysis of this setting nor provide any examples. In this note, we analyze

properties of the splitting estimator for the finite-time setting, showing how to determine the splitting curves, and

then consider a new estimator with truncated sample paths. Unlike the estimator in [18], the estimator proposed

here is unbiased.

Let l0 < l1 < · · · < lN = l be a sequence of levels for {Zt}, and define the inter-level hitting time β1 =

inf{t ≥ 0|Zt ≥ l1, Z0 = f(x0)}, and βk = inf{t ≥ 0|Zt+τk−1
≥ lk, Zτk−1

= lk−1(τk−1)} for k = 2, . . . , N , where

τ0 = β0 = 0 and τk =
∑k
i=1 βi, k = 1, . . . , N . Then, we define the event Dk := {τk =

∑k
i=1 βi < T}, which

satisfies Dk ⊂ Dk−1 for k = 2, . . . . , N , and DN is the rare event. Let D0 = {0 < T}, which is a deterministic

event with Pr{D0} = 1. Denote pi = Pr{Di|Di−1} for i = 1, . . . , n. Since Pr{Di} = Pr{Di ∩ Di−1} =

Pr{Di|Di−1}Pr{Di−1}, we have

γ = Pr{DN} =
N∏
i=1

Pr{Di|Di−1} =
N∏
i=1

pi.
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Thus, estimating rare event probability Pr{DN} is decomposed into estimating N “less rare” event probabilities

Pr{Di|Di−1}, i = 1, . . . , N .

Given the splitting levels, we say a path is in Stage i after it first hits Level i− 1 and prior to hitting Level i. If

a path in Stage i hits Level i, we call this path a successful path for Level i, and the corresponding value of Xt is

called an entrance state for Level i, denoted by Si. Let ni be the number of splittings for each successful path for

Level i, and Ri be the number of successful paths starting at Level i− 1 and hitting Level i with R0 = 1. For an

illustration, see Fig. 1. The basic splitting procedure is provided in Algorithm 1.

Algorithm 1 Splitting algorithm
Input: Rare event level l, number of levels N , and splitting levels l0 < l1 < · · · < lN = l; number of initial

simulation paths n0, number of splittings ni when a successful path hits Level i, i = 1, . . . , N . Let R0 = 1.

1: for i = 1 to N do

2: Let Ri = 0.

3: for j = 1 to Ri−1ni−1 do

4: if the path hits li, it splits ni times at next stage, and let Ri = Ri + 1, else go to next path.

5: end for j

6: end for i

Output: Return the rare event estimator

γ̂ =

N∏
i=1

Ri
Ri−1ni−1

=
RN∏N
i=1 ni−1

. (1)

Remark 1. [7] provides two ways to implement Algorithm 1. The first way is called global stepping, where we

simulate a path by finishing all the consecutive stages before starting a new path. The second way is called single

stepping, where we simulate all the paths simultaneously for one stage, and record all the entrance states for the

stage, then go to the next stage. In this paper, we use the single stepping implementation, which is especially

amenable to parallel computing implementation.

Remark 2. As pointed out by [5], the original proof of the unbiasedness of the estimator given in [7] is not correct

in general, and [5] provided a new proof based on constructing a new strong Markov process. In this note, we fix
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Fig. 1. Illustration of stages, splitting levels, and splitting paths.
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the original proof in [7], which is much simpler than the proofs in [5].

A. Fixed splitting

Depending on how the {ni} are chosen, importance splitting can be basically divided into either fixed splitting

or fixed effort. For fixed splitting, {ni, i = 1, . . .} are constants (not necessarily the same constant), whereas for

fixed effort, {ni, i = 1, . . .} are chosen to make niRi approximately the same for all i. In the following, we analyze

properties of the fixed splitting estimator.

Let Pj:i(x, t) be the probability that a path starting at state x at time t at Level i hits Level j before T , and let Ii

denote a Bernoulli random variable with success probability Pi+1:i(Si, τi). Thus, given the ith entrance state Si and

τi, E[Ii] = P̃i+1:i, where we introduce the notation P̃j:i , Pj:i(Si, τi), since by definition Xτi = Si. Let “ d=” denote

equal in distribution. Then given Ri = ri and all the i.i.d. entrance states (S
(j)
i , τ

(j)
i )

d
= (Si, τi), j = 1, . . . , ri,

and i.i.d. Bernoulli random variables I(k,j)i
d
= I

(j)
i , k = 1, . . . , ni, for j = 1, . . . , ri, on Level i, where I(j)i is a

Bernoulli random variable with success probability P̃ (j)
i+1:i , Pi+1:i(S

(j)
i , τ

(j)
i ),

Ri+1 =

ri∑
j=1

ni∑
k=1

I
(k,j)
i . (2)

Let Si =
(
S
(1)
i , . . . , S

(ri)
i

)
and τ i =

(
τ
(1)
i , . . . , τ

(ri)
i

)
, and consider the conditional expectation of Ri+1:

E[Ri+1|Ri,Si, τ i] = E

 Ri∑
j=1

ni∑
k=1

I
(k,j)
i

∣∣∣∣∣∣Ri,Si, τ i


=

Ri∑
j=1

ni∑
k=1

E
[
I
(k,j)
i

∣∣∣Ri,Si, τ i] = Ri∑
j=1

niP̃
(j)
i+1:i. (3)

When i = 0, S0 = x0 is initial value, τ 0 = τ0 = 0 and R0 = 1. Now we can prove the unbiasedness of the

splitting estimator.

Theorem 1. The estimator given by Equation (1) is an unbiased estimator of γ.

Proof. The estimator is γ̂ =
∏N
i=1 p̂i with p̂i = Ri/(Ri−1ni−1). By Equation (3),

E[RN |RN−1,SN−1, τN−1] =
RN−1∑
j=1

nN−1P̃
(j)
N :N−1,

so that the conditional expectation of p̂N is

E[p̂N |RN−1,SN−1, τN−1]

= E

[
RN

RN−1nN−1

∣∣∣∣RN−1,SN−1, τN−1]

=
1

RN−1nN−1

RN−1∑
j=1

nN−1P̃
(j)
N :N−1

=
1

RN−1

RN−1∑
j=1

P̃
(j)
N :N−1. (4)
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Notice that

P̃
(j)
N :N−2 = PN :N−2

(
S
(j)
N−2, τ

(j)
N−2

)
= E

[
I
(j)
N−2IN−1

∣∣∣∣SN−2, τN−2]
= E

[
E
[
I
(j)
N−2IN−1

∣∣∣SN−1, τN−1]∣∣∣∣SN−2, τN−2]
= E

[
I
(j)
N−2E

[
IN−1

∣∣SN−1, τN−1]∣∣∣∣SN−2, τN−2]
= E

[
I
(j)
N−2P̃N :N−1

∣∣∣∣SN−2, τN−2]. (5)

Next consider

E [ p̂N p̂N−1|RN−2,SN−2, τN−2]

= E

[
E
[
p̂N p̂N−1

∣∣∣RN−1,SN−1, τN−1]∣∣∣RN−2,SN−2, τN−2]
= E

[
E
[
p̂N

∣∣∣RN−1,SN−1, τN−1]p̂N−1∣∣∣RN−2,SN−2, τN−2]

= E

[
1

RN−1

RN−1∑
j=1

P̃
(j)
N :N−1

RN−1
RN−2nN−2

∣∣∣∣∣RN−2,SN−2, τN−2
]

=
1

nN−2RN−2
E

[
P̃N :N−1RN−1

∣∣∣∣RN−2,SN−2, τN−2]
since (S

(j)
N−1, τ

(j)
N−1) are i.i.d., and independent of RN−1

=
1

nN−2RN−2
E

[RN−2∑
j=1

nN−2∑
k=1

I
(k,j)
N−2P̃N :N−1

∣∣∣∣RN−2,SN−2, τN−2]

=
1

RN−2

RN−2∑
j=1

E

[
I
(j)
N−2P̃N :N−1

∣∣∣∣SN−2, τN−2]. (6)

Then by Equations (5) and (6),

E [ p̂N−1p̂N |RN−2,SN−2, τN−2] =
1

RN−2

RN−2∑
j=1

P̃
(j)
N :N−2

(7)

Continuing by induction, following the analysis used to establish Equations (4) and (7),

E[γ̂] = E[p̂N p̂N−1 · · · p̂1|R0 = 1,S0 = x0, τ 0 = 0]

=
1

R0

R0∑
j=1

P̃
(j)
N :0 = PN :0(x0, 0) = γ,

and the theorem is proved.

[7] claimed that the unconditional expectation E[p̂i] = Pr{Di|Di−1} = pi, whereas our proof makes clear

(see Equation (4)) that probability depends on the entrance states and the success paths of previous level, i.e., the

unconditional expectation of Equation (4) does not necessarily equal pi. Thus, our proof uses induction on the
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Fig. 2. The importance of the paths.

conditional expectation to establish the unbiasedness, which does not depend on the choice of the splitting levels.

However, good splitting levels can make the estimator more efficient.

B. Splitting curves for finite time

When to split in the finite-time setting differs from the classical splitting setting, because in the finite-time setting,

a path loses its importance not only when it strays far away from the rare event set but also when it approaches

the termination time. For example, in Fig. 2, both paths hit the splitting level, but the black path is less likely to

hit the rare event level than the gray one, because it hits the splitting level much closer to the termination time. By

Equation (1), minimizing the variance of estimator γ̂ is equivalent to minimizing the variance of RN , the number

of final-level successful paths. Based on those observations, we derive the properties that the splitting curve should

satisfy to minimize the variance of the estimator. To distinguish from the classical constant splitting level li, we

use Li = {li(t)} to denote the ith splitting curve, which is a function of t, and Algorithm 1 can be modified for

the finite time setting accordingly by replacing li with Li.

Theorem 2. The set of optimal splitting curves Li ≡ {li(t)}, i = 1, . . . , N − 1, that minimizes the variance of

estimator γ̂, must satisfy PN :i (li(t), t) = ci, 0 ≤ t ≤ T , for constants ci > 0, where PN :i (x, t) is the probability

that a path starting from state x at time t at Level i hits the rare event set.

Proof. We first analyze how the entrance state affects the variance of Ri+1. Given (Ri,Si, τ i), Ri+1 follows a

binomial distribution Bin(ni, Pi+1:i(Si, τi)), and by the conditional variance decomposition,

Var[Ri+1|Ri = ri] = (8)

E[Var(Ri+1|Ri = ri,Si, τ i)] + Var(E[Ri+1|Ri = ri,Si, τ i]).

For the first term,

E[Var(Ri+1|Ri = ri,Si, τ i)]

= E

Var

 ri∑
j=1

ni∑
k=1

I
(k,j)
i

 = E

 ri∑
j=1

Var

(
ni∑
k=1

I
(k,j)
i

)
= E

 ri∑
j=1

niP̃
(j)
i+1:i

(
1− P̃ (j)

i+1:i

)
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= riniE[P̃i+1:i]− riniE
[(
P̃i+1:i

)2]
= riniqi+1 − rini

(
Var
(
P̃i+1:i

)
+ q2i+1

)
, (9)

where qi+1 , E[P̃i+1:i]. For the second term, by Equations (2) and (3),

Var (E[Ri+1|Ri = ri,Si, τ i]) = Var

 ri∑
j=1

niP̃
(j)
i+1:i


= rin

2
iVar

(
P̃i+1:i

)
. (10)

Substituting (9) and (10) into (8):

Var[Ri+1|Ri = ri]

= riniqi+1 − riniq2i+1 + rini(ni − 1)Var(P̃i+1:i),

so

E
[
R2
i+1|Ri = ri

]
= Var[Ri+1|Ri = ri] + (E[Ri+1|Ri = ri])

2

= ri

(
niqi+1 − niq2i+1 + ni(ni − 1)Var(P̃i+1:i)

)
+r2i n

2
i q

2
i+1. (11)

For notational convenience, denote niqi+1 − niq2i+1 + ni(ni − 1)Var(P̃i+1:i) , Ai and n2i q
2
i+1 , Bi, which are

both deterministic values. Then (11) becomes

E
[
R2
N |RN−1

]
= RN−1AN−1 +R2

N−1BN−1.

Consider

E
[
R2
N |RN−2 = rN−2

]
= E

[
E
[
R2
N |RN−1, RN−2 = rN−2

]]
= E [RN−1|RN−2 = rN−2]AN−1

+E
[
R2
N−1|RN−2 = rN−2

]
BN−1

Substituting (11) by letting i = N − 2,

= E [RN−1|RN−2 = rN−2]AN−1

+rN−2AN−2BN−1 + r2N−2BN−1BN−2

Similarly,

E
[
R2
N |RN−3 = rN−3

]
= E [RN−1|RN−3 = rN−3]AN−1

+E [RN−2|RN−3 = rN−3]AN−2BN−1

+rN−3AN−3BN−1BN−2 + r2N−3BN−1BN−2BN−3.
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Fig. 3. Truncated path strategy.

Continuing by iteration,

E
[
R2
N |R0 = 1

]
= E [RN−1|R0 = 1]AN−1

+

N−2∑
i=1

E[Ri|R0 = 1]Ai

N−2∏
j=i

Bj+1


+E[R2

1|R0 = 1]

N−2∏
j=0

Bj+1

= E[RN−1|R0 = 1]
(
nN−1qN − nN−1q2N

+nN−1(nN−1 − 1)Var
(
P̃N :N−1

))
+

N−2∑
i=1

{
E[Ri|R0 = 1]

(
niqi+1 − niq2i+1 + ni(ni − 1)×

Var
(
P̃i+1:i

))N−2∏
j=i

n2j+1q
2
j+2

}
+ q1

N−2∏
j=0

n2j+1q
2
j+2.

Minimizing the variance is equivalent to minimizing E(R2
N ). Since ni > 1 it is optimal to let Var(P̃i+1:i) =

Var(Pi:i−1 (Si−1, τi−1)) = 0, i.e., Pi:i−1 (li−1(t), t) is a constant, which is equivalent to PN :i (li(t), t) = ci, 0 ≤

t ≤ T , where ci is a constant, for all i = 1, . . . , N − 1.

The finite-time case can also be modeled by augmenting the state of the original process, i.e., for Markov process

{Xt}, the finite-time case could redefine the state as X̃t = (Xt, t), so [7] or [20] could be applied to find the

optimal splitting levels, but the increased dimensionality of the process makes it computationally more challenging.

III. THE TRUNCATION ESTIMATOR

In our setting, with a terminal time T , it may be computationally advantageous to stop early if it becomes clear

that a path is highly unlikely to hit the target set, complementing the splitting of paths that look promising. Let B

be the truncation boundary, i.e., when a path hits B, the path is terminated, e.g., the dashed green line in Fig. 3.

We assume that each point on B has the same probability γK of hitting the rare event set (prior to T ) and B is

chosen such that γK � γ. Under the truncation setting, let R′i be the number of successful paths, starting at Level

i− 1 and hitting Level i, and Ki be the number of killed paths between Level i− 1 and Level i.

The next theorem shows that the truncation estimator (12) is also unbiased.
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Algorithm 2 Truncated splitting algorithm
Input: Rare event level l, truncation boundary B, correction probability γK , number of splitting curves N , and

splitting curves l0 < L1 < · · · < LN = l; number of initial simulation paths n0, number of splittings ni when

a successful path hits splitting curve Li, i = 1, . . . , N − 1.

1: for i = 1 to N do

2: Let R′i = 0 and Ki = 0.

3: for j = 1 to R′i−1ni−1 do

4: if the path hits li, it splits ni times at next stage, and let R′i = R′i + 1.

5: if the path hits B, terminate this path, and let Ki = Ki + 1.

6: end for j

7: end for i

Output: Return the estimator

γ̂tr =
R′N∏N−1
i=0 ni

+ γK

N∑
i=1

Ki∏i−1
j=0 nj

. (12)

Theorem 3. Under the setting in Theorem 2, the estimator γ̂tr is an unbiased estimator of γ.

Proof. Under the setting of Theorem 2, the probability of any point starting from Level i− 1 hitting Level i is a

constant (denoted by pi). For i = 1, . . . , N − 1, consider the reduction in the number of Stage i successful paths

after truncation, which can be divided into two sets: paths killed in Stage i and paths killed prior to Stage i. Thus,

conditioning on the number of paths reaching Stage i:

E
[
Ri −R′i|Ri−1 = ri−1, R

′
i−1 = r′i−1

]
= E

[
Ki|Ri−1 = ri−1, R

′
i−1 = r′i−1

] γK∏N
j=i+1 pj

+
(
ri−1 − r′i−1

)
ni−1pi, (13)

where γK/
∏N
j=i+1 pj is the probability that a path starting from truncation boundary B hits Level i. Similarly, for

Level N ,

E
[
RN −R′N |RN−1 = rN−1, R

′
N−1 = r′N−1

]
= E

[
KN |RN−1 = rN−1, R

′
N−1 = r′N−1

]
γK

+
(
rN−1 − r′N−1

)
nN−1pN .

Next, we consider

E
[
RN −R′N |RN−2 = rN−2, R

′
N−2 = r′N−2

]
= E

[
E
[
RN −R′N∣∣RN−1, R′N−1, RN−2 = rN−2, R

′
N−2 = r′N−2

]]
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= E[KN |RN−2 = rN−2, R
′
N−2 = r′N−2]γK + nN−1pN×

E
[
RN−1 −R′N−1

∣∣RN−2 = rN−2, R
′
N−2 = r′N−2

]
= E[KN |RN−2 = rN−2, R

′
N−2 = r′N−2]γK

+
(
E[KN−1|RN−2 = rN−2, R

′
N−2 = r′N−2]

γK
pN

+
(
rN−2 − r′N−2

)
nN−2pN−1

)
nN−1pN

by applying (13) with i = N − 1,

= E[KN |RN−2 = rN−2, R
′
N−2 = r′N−2]γK

+E[KN−1|RN−2 = rN−2, R
′
N−2 = r′N−2]nN−1γK

+
(
rN−2 − r′N−2

)
nN−1nN−2pNpN−1.

Denoting ki = E[Ki|R0 = 1, R′0 = 1] = E[Ki], then by iteration,

E[RN −R′N ] = E[RN −R′N |R0 = 1, R′0 = 1] = γK×(
kN + kN−1nN−1 + kN−2nN−1nN−2 + · · ·+ k1

N−1∏
q=1

nq

)

= γK

(
kN +

N−1∑
l=1

(
kl

N−1∏
q=l

nq

))
.

Let γ̂′ = R′N/
∏N−1
i=0 ni. Then

E[γ̂ − γ̂′] = E

[
RN∏N−1
i=0 ni

− R′N∏N−1
i=0 ni

]

=
1∏N−1

i=0 ni
E[RN −R′N ] = γK

N∑
i=1

ki∏i−1
j=0 nj

.

So

E[γ̂tr] = E

[
γ̂′ + γK

N∑
i=1

Ki∏i−1
j=0 nj

]

= E [γ̂′] + γK

N∑
i=1

ki∏i−1
j=0 nj

= E[γ̂] = γ.

The last equality holds by Theorem 1.

IV. PILOT ALGORITHM

[7] and [4] suggest using a pilot algorithm to determine the splitting parameters such as the splitting levels, the

number of splitting levels, and the number of splittings for each successful point ni. Here, we propose a new pilot

algorithm given pi and ni to determine the splitting curves Li, which differs from previous work, because the

curves are time dependent. We first make the following assumption.

Assumption 1. {Zt} is a Markov process with stationary increments, i.e., Zt − Zs
d
= Zt−s,∀s, t > 0.
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Fig. 4. Pilot run curves; m = 100 for left panel; m = 200 for middle panel; m = 800 for right panel.

By Theorem 2, the splitting curves should satisfy the condition that all paths starting from any point on the Level

i splitting curve share a constant probability ci of hitting the rare event set, which implies that all the paths starting

from any point on Li−1 have a constant probability ci/ci−1 = pi of hitting the next level Li. Therefore, we can

determine each splitting curve backwards step by step, i.e., given Li, we use a pilot run to estimate Li−1
Suppose that a path hits Level i− 1 at s, i.e., the entrance state is xs := li−1(s). Let τ = inf{t ≥ s|Zt ≥ li(t)}

be the first time that the path hits Level i. Then, by Theorem 2, for any t ∈ [s, T ],

Pr{τ ≤ T |Zs = xs} = pi,

which is equivalent to

Pr

{
max
t∈(s,T ]

{Zt − li(t)} ≥ 0

∣∣∣∣Zs = xs

}
= Pr

{
max
t∈(s,T ]

{xs + Zt−s − li(t)} ≥ 0

}
= Pr

{
min
t∈(s,T ]

{li(t)− Zt−s} ≤ xs
}

= pi.

The first equality holds because of the stationary increments property, and the second equality holds since, for fixed

s, xs is a constant value. Let Bs = mint∈(s,T ]{li(t)− Zt−s}, and then we need to estimate the pi-quantile of Bs.

The pilot run algorithm is presented in Algorithm 3.
Remark 3. pi can be estimated by pi = γ̂1/N , i = 1, . . . , N , where γ̂ is obtained by another pilot run with some

other levels, e.g., linear levels with ending points at L. Alternatively, we can artificially set pi = c, and input N is

determined by this probability c or artificially setting N to a constant.

To estimate the truncation boundary, we carry out an additional pilot run after i = 1, and set pi = cα such that

γK =
∏N
i=1 picα < γ (or γK = cNcα < γ). Specifically, when obtaining l1(t), we do another loop from Step 3 to

Step 6 of Algorithm 3 with pi = cα, and obtain l0(t), which is the truncation boundary. Notice that if the truncation

boundary is estimated, the truncated estimator γ̂tr given by Equation (12) is no longer unbiased, because the bias

may be introduced by the estimated truncation boundary.
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Algorithm 3 Pilot algorithm for determining splitting curves
Input: rare event level l; number of splitting curves N ; hitting probabilities pi, i = 1, . . . , N , ; terminal time T ,

discretization points {0 = t0 < t1 < · · · < tm = T}, and number of pilot runs M .

Initialization: initial value Z0; set i = N and lN = l.

1: for i = N to 1 do

2: for j = 0 to m do

3: Generate Ztk−tj from k = j + 1 to m.

4: Let Btk = mink=j+1...,m{li(tk)− Ztk−tj}.

5: Repeat M times to obtain Bstk , s = 1, . . . ,M , and the order statistics {B(1)
tk
≤ B(2)

tk
≤ · · · ≤ B(M)

tk
}.

6: Set li−1(tj) = B
(dpiMe)
tj .

7: end for j

8: end for i

Output: Discrete splitting curves li(tj), i = 1, . . . , N, j = 0, . . . ,m, where lN (tj) = l for all j.

V. NUMERICAL EXAMPLES

In this section, we first test our pilot algorithm, then verify the optimality of the splitting curves derived in

Section II and test the effectiveness of the truncation estimator proposed in Section III. Throughout, we take

pi = γ1/N , i = 1, . . . , N − 1 and ni = d1/pie, i = 1, . . . , N − 1.

A. Testing the pilot algorithm

Let Zt = Xt be a standard Brownian motion, and consider the probability that Zt hits l = 5 before time

T = 1. Let N = 8, M = 2000. By Theorem 2 and [21], we can calculate γ and the splitting curves analytically

(γ = 5.73 · 10−7, pi = 0.169), and Fig. 4 shows the results from the pilot runs for m = 100, 200, 800, indicating

how finer discretizations lead to more accurate estimated curves.

B. Optimality of the splitting curves

We compare the optimal splitting curves (denoted SC) derived in this note with the optimal constant levels

(denoted CL) for classical splitting setting. For l = 5 and T = 1 again (so γ = 5.73 · 10−7 again), N = 5 (so

pi = 0.056 and ni = 18), m = 100, n0 = 2000, the results are graphed in Fig. 5. For the estimated splitting curves

(denoted EC) via Algorithm 3, we take the fixed inter-level probability c = 0.04.

To balance the variance and computational effort when comparing estimator performance, we consider the work-

normalized variance as in [6], which is defined as Var(γ̂)w, where w is the average computational effort per

replication. More specifically, for a replication, if the path does not split, then w = T ; otherwise w = t1 +∑N
i=2(ti− ti−1)ni−1, where ti is the epoch at which it splits on hitting Level i. Fig. 6 shows the variance, average

computational effort w, and the work-normalized variance with respect to the number of initial simulations n0 based

on 1000 independent replications. Both the EC and SC estimators have smaller variance than the CL estimator, and

the superiority is more significant for work-normalized variance. Since the average cost is almost linearly increasing
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TABLE I

COMPARISON OF ESTIMATORS BASED ON n0 = 2000 AND 100 INDEPENDENT MACROREPLICATIONS. C1: m = 400, l = 3, N = 5, ni = 4.

C2: m = 100, l = 5, N = 5, ni = 18. C3: m = 400, l = 5, N = 5, ni = 18. C4: m = 1000, l = 5, N = 5, ni = 18. C5: m = 100,

l = 7, N = 8, ni = 29 (STANDARD ERRORS IN PARENTHESES). DEFINE w∗ = w/n0 .

SC EC T-SC T-EC

Ptrue Pe (std err) w∗ RE (%) Pe (std err) w∗ RE (%) Pe (std err) w∗ RE (%) Pe (std err) w∗ RE (%)

C1 2.70 · 10−3
2.50 · 10−3

(.017 · 10−3)

4.3 7.4
2.52 · 10−3

(.019 · 10−3)

3.6 6.6
2.78 · 10−3

(.015 · 10−3)

2.2 2.9
2.77 · 10−3

(.015 · 10−3)

1.9 2.6

C2 5.73 · 10−7
4.47 · 10−7

(.081 · 10−7)
4.3 22.0

4.39 · 10−7

(.065 · 10−7)
5.5 23.3

4.41 · 10−7

(.074 · 10−7)
2.5 23.1

4.06 · 10−7

(.063 · 10−7)
2.5 29.4

C3 5.73 · 10−7
4.90 · 10−7

(.079 · 10−7)

5.0 14.5
4.94 · 10−7

(.057 · 10−7)

8.5 13.9
5.07 · 10−7

(.078 · 10−7)

2.8 11.6
4.85 · 10−7

(.060 · 10−7)

3.9 15.4

C4 5.73 · 10−7
5.28 · 10−7

(.091 · 10−7)

5.2 7.9
5.23 · 10−7

(.061 · 10−7)

12 8.8
5.32 · 10−7

(.086 · 10−7)

2.9 7.1
5.20 · 10−7

(.053 · 10−7)

5.7 9.3

C5 2.56·10−12
1.73 · 10−12

(.058 · 10−12)

9.1 32.4
1.69 · 10−12

(.056 · 10−12)

8.2 34.1
1.85 · 10−12

(.049 · 10−12)

5.9 27.8
1.73 · 10−12

(.050 · 10−12)

4.5 32.3

with respect to n0, the work-normalized variance is almost a constant. The EC estimator costs more than the SC

estimator on average due to the fluctuations in the estimated splitting curves.

C. Effectiveness of the truncation estimator

Now we compare the SC estimator with the truncated SC estimator (T-SC) and truncated EC estimator (T-EC).

For T-SC, the truncated level is calculated analytically, and for T-EC, the truncated level is also calculated by the

pilot algorithm (see Remark 3) with cα = 0.1. As illustrated in Fig. 7 (based on 1000 independent replications),

both T-SC and T-EC estimators require less computation than SC, and have superior work-normalized variances.

Table I provides results comparing SC, EC, T-SC, and T-EC for other parameter settings (keeping T = 1) based on

100 replications. Since the process is discretized, between the discrete time points there is a possibility that the rare

event is reached but undetected, so the estimator is biased, and we use the relative error (RE) to measure the bias of

the estimators, and the standard error (std err) to measure the variance in the table. Comparing the results in C2, C3
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Fig. 5. Splitting curves for finite time and classical setting.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX 14

0 2000 4000 6000 8000 10000 12000

n
0

0

0.5

1

1.5

2

2.5

3

3.5

4
V

ar
ia

nc
e

×10-14

CL
SC
EC

0 2000 4000 6000 8000 10000 12000

n
0

0

2

4

6

8

10

12

A
ve

ra
ge

 c
os

t

×104

CL

SC

EC

0 2000 4000 6000 8000 10000 12000

n
0

0

0.5

1

1.5

2

W
or

k-
no

rm
al

iz
ed

 v
ar

ia
nc

e

×10-10

CL

SC

EC

Fig. 6. Variance, average cost, and work-normalized variance for three different splitting curves based on 1000 independent replications.
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Fig. 7. Variance, average cost, and work-normalized variance estimators with and without truncation based on 1000 independent replications.

and C4 illustrates how increasing m reduces bias. The truncation estimators perform as well as the non-truncation

estimators, but with less computation.

D. Risk management example

In this subsection, we provide an application in risk management. The bankruptcy probability or default probability

is an important indictor in risk management and insurance. For example, the US bank default probability is used

to determine FDIC insurance premiums that banks are charged. In reduced-form models of credit risk (see [22] for

more details), if the assets level of a company sinks below the debt level of the company, default occurs. Let Zt be

the assets of the company and d be its debt, and τ = inf{t ≥ 0|Zt < d} be the default time. Investors are usually

interested in the default probability before a given time T , i.e., Pr{τ ≤ T}, where T may be the bond maturity or

the annual date at which a portfolio loss risk needs to be reported to shareholders.

In this example, we assume the assets of the company contain three factors, which are modeled by the variance-

gamma process (VG) (see [23], [24]). Let Zt = w>St, where St = (S
(1)
t , S

(2)
t , S

(3)
t )> is a three-dimensional

VG process with initial value S0 = (1, 1, 1)> and parameter values θ = (0, 0.1,−0.1)>, ν = (0, 2, 0.3, 0.4)> and

σ = (0.2, 0.2, 0.3)>. Let w = (1, 1, 1)>, i.e., each factor has equal weight, and d = 1. In the splitting algorithms,

let N = 6, m = 100, M = 1000, pi = c = 0.1, ni = d1/pie = 10, i = 1, . . . , N − 1, cα = 0.05. Then we

compare the classical Monte Carlo (CMC) with EC and T-EC based on 100 replications. Since we do not have an

analytical formula for the true default probability, we use the estimated probability of CMC from 108 paths as the

true probability. In Fig. 8, CMC has significantly larger variance than EC and T-EC. When n0 = 5000, most of the

estimated values are 0, whereas EC and T-EC provide reasonable estimates. Further, we show the work-normalized
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Fig. 8. Boxplots for default probability: n0 = 5000 (left), 50000 (right).

TABLE II

WORK-NORMALIZED VARIANCE FOR DEFAULT PROBABILITY

Unit:10−5 CMC EC T-EC

n0 = 5000 9.07 0.757 0.217

n0 = 50000 7.60 0.863 0.236

variance in Table II, which indicates that T-EC has smaller work-normalized variance than EC, and both T-EC and

EC have much smaller work-normalized variance than CMC.

VI. CONCLUSION

In this note, we study importance splitting for rare event simulation of Markov processes under a finite-time

constraint, deriving an unbiased estimator and characterizing the properties of the new splitting curves. We also

provide a new unbiased estimator that incorporates truncated paths to improve the computational efficiency. A pilot

algorithm is given to estimate the splitting and truncation curves. Numerical examples illustrate the effectiveness

of the new estimators.
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