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Abstract

In this paper, we estimate quantile sensitivities for dependent sequences via

infinitesimal perturbation analysis (IPA), and prove asymptotic unbiasedness,

weak consistency, and a central limit theorem for the estimators under some

mild conditions. Two common cases, the regenerative setting and φ-mixing,

are analyzed further, and a new batched estimator is constructed based on

regenerative cycles for regenerative processes. Two numerical examples, the

G/G/1 queue and the Ornstein-Uhlenbeck process, are given to show the

effectiveness of the estimator.
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1. Introduction

Tail performance measures such as quantiles and tail probabilities are more appropri-

ate than classical performance measure such as mean and variance when characterizing

the extreme properties of a stochastic system. For example, Value-at-Risk (VaR), which

is a quantile, is often used as a measure of risk in the management of a financial portfolio

(Glasserman et al. [13]). Quantiles as performance measures have been studied widely

in other fields like inventory control (Gelinas et al. [10]), queueing (Heidelberger and
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Lewis [14]) and reliability (Nair and Sankaran [25]).

For complex stochastic systems, simulation is commonly used to estimate perfor-

mance, for which Serfling [29] provides an overview of quantile estimation for inde-

pendent and identically distributed (i.i.d.) data; recent work includes Ghosh and

Pasupathy [11]. For dependent sequences, Sen [28] provides a representation of the

quantile by order statistics and a confidence interval (CI) for the estimator. Other

methods, such as interpolation (Iglehart [19]), batching (Seila [26]), maximum trans-

formation (Heidelberger and Lewis [14]), and the piecewise-parabolic algorithm (Jain

and Chlamtac [20]) have been developed. For some recent work, see Bekki et al. [4]

and Alexopoulos and Wilson [1].

Our work addresses quantile sensitivity estimation. Previous work goes back to

Hong [18], who introduced infinitesimal perturbation analysis (IPA) to estimate the

quantile sensitivity based on analysis of a probability sensitivity. Jiang and Fu [21]

presented an alternative more direct derivation of the IPA estimators for both batched

and unbatched estimators. Fu, Hong and Hu [9] applied smoothed perturbation anal-

ysis (SPA) to derive a more general estimator with wider applicability and improved

convergence rate. Other gradient estimators, such as a kernel estimator (cf. Liu and

Hong [23]) and weak derivative estimator (cf. Heidergott and Volk-Makarewicz [15])

have also been introduced.

Previous work has primarily treated the i.i.d. setting. In this paper, we consider

dependent processes, with a focus on estimating the quantile sensitivity of steady-

state performance. A particular case is regenerative processes, which have many

applications in inventory control and queueing theory, e.g., analyzing the steady-state

waiting time. For more details about regenerative processes, refer to Asmussen [2]

and Serfozo [30]. More generally, a strong mixing condition is introduced to capture

asymptotic properties of dependent random variables (Bradley [5]), and a quantile

sensitivity estimator derived for this setting.

The most closely related works are Hong [18], which provided a numerical example

to illustrate that the IPA estimator can be used to estimate quantile sensitivities

of the waiting time in an M/M/1 queue, and Liu and Hong [23], which considered

stationary φ-mixing sequences for the kernel estimator. The main contribution of

this paper is a rigorous theoretical analysis of the IPA estimator for more general
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dependent sequences that are not necessarily stationary but which have a limiting

distribution. For regenerative processes, we derive an alternative batched estimator

based on regenerative cycles, which shows better performance than the original batched

estimator. The rest of the paper is organized as follows: In Section 2, we briefly

review the IPA estimator for quantile sensitivities in the i.i.d. setting and adapt this

framework to dependent sequences, proving asymptotic unbiasedness and consistency

of the estimator under some mild conditions. In Section 3, we consider two special cases,

regenerative processes and φ-mixing processes, and provide their statistical properties.

Numerical examples are given in Section 4 to show the effectiveness of the estimators

for a G/G/1 queue and an Ornstein-Uhlenbeck (OU) process. Section 5 concludes.

2. IPA quantile sensitivity estimation

IPA has been used for estimating quantile sensitivities of i.i.d sequences (Hong [18]

and Jiang and Fu [21]). In the setting of those papers, the quantile sensitivity estimator

is obtained from the IPA derivatives of the corresponding order statistics. Since we

consider sequences where each element may depend on previous elements and may

not be identically distributed, such as waiting times in a queueing system, the results

in the previous papers cannot be applied directly, which motivates us to provide an

alternative approach. In this section, we first consider stationary processes, and then

extend the results to non-stationary processes. Finally, we provide a batched estimator

which is asymptotically unbiased and weakly consistent.

2.1. IPA estimator for quantile sensitivity in stationary processes

Let {Xt, t = 0, 1, 2, . . .} be a discrete-time stationary stochastic process with marginal

cumulative distribution function (c.d.f.) F (x; θ) = Pr{Xt ≤ x}, where θ ∈ Θ is the

parameter of interest, and let qα denote the α-quantile of Xt (α ∈ (0, 1)), which is a

number satisfying Pr{X ≤ qα} ≥ α and Pr{X ≥ qα} ≥ 1 − α. If Xt is a continuous

random variable, then Pr{Xt ≤ qα} = F (qα; θ) = α, where F (·, θ) has a continuous

support. We make the following assumption:

A1. In a neighbourhood of x = qα, F (x; θ) is continuously differentiable with

respect to (w.r.t.) both arguments. The density ∂1F (x; θ) is strictly positive for each
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θ ∈ Θ.

Let q′α , dqα/dθ denote the α-quantile sensitivity of Xt w.r.t. θ. The setting of

interest is where F (x; θ) is unknown, but Xt can be represented as a function of some

other random variables that have known c.d.f.’s. For example, if Xt is the waiting

time of a G/G/1 queue, it is a function of interarrival times {A1, . . . , At} and service

times {S1, . . . , St}, with c.d.f.’s assumed known. Since α = F (qα; θ), differentiating

both sides w.r.t. θ leads to

q′α = −∂2F (qα; θ)

∂1F (qα; θ)
, (1)

where ∂i denotes the partial differentiation w.r.t. ith argument of F , and A1 guarantees

the RHS of Equation (1) exists.

If F (x; θ) is known, we can first estimate the quantile qα, then substitute into

Equation (1). However, in general, F (x; θ) cannot be computed exactly, and we have

to estimate q′α by another approach. The order statistics of sequence {Xt, t = 1, . . . , n}

are given by

X(1) ≤ X(2) · · · ≤ X(dαne) ≤ · · · ≤ X(n). (2)

Then we can define the sample quantile based on the corresponding order statistic

q̂nα = X(dαne), (3)

where dxe is the smallest integer greater than x. Then, we need the following additional

assumption:

A2. q̂nα
d→ qα as n→∞, where “

d→” denotes convergence in distribution.

Remark 1. A1 is a typical assumption used in quantile sensitivity estimation (cf.

Hong [18] and Jiang and Fu [21]). For i.i.d. sequences, q̂nα converges to qα w.p.1, which

is the key step for proving the asymptotic unbiasedness of the quantile sensitivity

estimator (Jiang and Fu [21]). Therefore, for dependent sequences, if it still holds that

the quantile estimator converges to the true quantile, we can follow the framework

in Jiang and Fu [21] with some technical adjustments. A2 holds for many classes

of dependent sequences. For example, in regenerative processes, if the derivative of

the density of the steady-state c.d.f. ∂21F (x; θ) exists and is bounded by M in a

neighbourhood of qα, then A2 holds (Iglehart [19]). We will discuss this case in detail

in the next section.
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Let dX/dθ denote the ordinary IPA estimator of X w.r.t. θ. For example, X =

A+ θS, where A is a random variable with parameter θ and S does not contain θ. If

dA/dθ is well defined, then dX/dθ = dA/dθ + S.

For the sequence (2), the corresponding derivatives w.r.t. θ are given by

dX(1)

dθ
,
dX(2)

dθ
, · · · ,

dX(dαne)

dθ
, · · · ,

dX(n)

dθ
,

and define the IPA quantile sensitivity estimator by

In =
dX(dαne)

dθ
. (4)

Theorem 1 in Jiang and Fu [21] is introduced to establish asymptotic unbiasedness of

the IPA estimator for dependent sequences.

Lemma 1. (Jiang and Fu [21].) Assume that X is differentiable w.r.t. θ ∈ Θ w.p.1,

and A1 is satisfied at the point y. Then,

E

[
dX

dθ

∣∣∣∣X = y

]
= −∂2F (y; θ)

∂1F (y; θ)
, (5)

where F (·; θ) is the c.d.f. of X.

Equation (5) connects the IPA estimator dX/dθ with the c.d.f. of X through

conditional expectation. By Fu [8], if this parameter is location, scale or generalized

scale parameter, the conditional expectation can be removed. For example, consider the

generalized scale parameter dX/dθ = (X− θ̄)/θ, then E[dX/dθ|X] = E[(X− θ̄)/θ|X] =

(X − θ̄)/θ. Lemma 1 can be regarded as an extension of the classical results of the

IPA estimator in Suri and Zazanis [32], where the random variable is simple and the

derivative can be represented by the quotient of partial derivatives of c.d.f.’s. However,

if Xt is a complicated function of other random variables, the IPA estimator cannot

be expressed by the quotient form. For example, Xt = θX1 + X2, where X1 and X2

are independent standard normal random variables. Then, Xt ∼ N(0, θ2 + 1), and

−∂2F (Xt; θ)/∂1F (Xt; θ) = θXt/(θ
2 + 1). By taking partial derivatives directly, we

obtain dXt/dθ = X1, which does not equal θXt/(θ
2 + 1). As in the i.i.d. case, the IPA

quantile sensitivity estimator given by (4) is asymptotically unbiased.

Theorem 1. Suppose that supnE[I2n] < ∞. If A1 and A2 hold, and dX/dθ exists,

then E[In]→ q′α as n→∞.
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Proof. By Lemma 1,

E

[
dXt

dθ

∣∣∣∣Xt = x

]
= −∂2F (x; θ)

∂1F (x; θ)
.

Substituting x = qα into the equation above, and by Equation (1),

q′α = E

[
dXt

dθ

∣∣∣∣Xt = qα

]
= −∂2F (qα; θ)

∂1F (qα; θ)
.

By A2, q̂nα
d→ qα as n→∞, and by A1, for i = 1, 2,

∂iF (q̂nα, θ)
d→ ∂iF (qα, θ),

so with the second part of A1,

−∂2F (q̂nα, θ)

∂1F (q̂nα; θ)

d→ −∂2F (qα, θ)

∂1F (qα; θ)
as n→∞.

Note that

E [In] = E

[
dX(dαne)

dθ

]
=

∫ ∞
−∞

E

[
dX(dαne)

dθ

∣∣∣∣X(dαne) = x

]
dFX(dαne)(x) (6)

=

∫ ∞
−∞
−∂2F (x; θ)

∂1F (x; θ)
dFX(dαne)(x)

= E

[
−∂2F (q̂nα; θ)

∂1F (q̂nα; θ)

]
,

where FX(dαne)(x) is the c.d.f. of X(dαne), and the last equality holds since we define

q̂nα = X(dαne) in (3). In the following, it suffices to prove ∂2F (q̂nα; θ)/∂1F (q̂nα; θ) is

uniformly integrable.

E

[(
∂2F (q̂nα; θ)

∂1F (q̂nα; θ)

)2
]

=

∫ ∞
−∞

(
E

[
dXt

dθ

∣∣∣∣Xt = y

])2

dFX(dαne)(y)

≤
∫ ∞
−∞

E

[(
dXt

dθ

)2
∣∣∣∣∣Xt = y

]
dFX(dαne)(y) = E[I2n], (7)

where the inequality follows by Jensen’s inequality for conditional expectation.

Since supnE[I2n] <∞, ∂2F (q̂nα; θ)/∂1F (q̂nα; θ) is uniformly integrable. Therefore,

E[In] = E

[
−∂2F (q̂nα; θ)

∂1F (q̂nα; θ)

]
→ E

[
−∂2F (qα; θ)

∂1F (qα; θ)

]
= q′α as n→∞.

�
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The proof is almost identical to the i.i.d. case, since the process is stationary,

which means each random variable has the same c.d.f. However, if the process is not

stationary but has a limiting distribution, e.g., the waiting time of a stable G/G/1

queue, we can still establish that the IPA estimator is asymptotically unbiased under

some mild conditions.

2.2. IPA estimator for quantile sensitivity in non-stationary processes

Let {Xt, t = 0, 1, 2, . . .} be a real-valued discrete stochastic process (not necessarily

stationary), such that there exists a steady-state random variable X satisfying Xt
d→ X

as t→∞. Stationary processes are the special case where Xt
d
= X. Let F (x; θ) denote

the c.d.f. of X, and qα denote the α-quantile of X. The goal in this subsection is to

estimate the quantile sensitivity of X, i.e., dqα/dθ. Let {Ft(x; θ), t = 0, 1, . . .} denote

the c.d.f. of {Xt, t = 0, 1, 2, . . .}, and we have Ft(x; θ) → F (x; θ) as t → ∞. Since we

need the regularity conditions for all the c.d.f.’s, A1 is replaced by A1′:

A1′. In a neighbourhood of x = qα, {Ft(x; θ), t = 0, 1, 2, . . .} and F (x; θ) are

continuously differentiable w.r.t. both arguments. The densities {∂1Ft(x; θ), t =

0, 1, 2, . . .} and ∂1F (x; θ) are strictly positive for each θ ∈ Θ.

Because each X(t) has a different c.d.f., the conditional expectation of dX(t)/dθ

has different expressions, which is one of the difficulties in proving the statistical

properties. Moreover, Ft(x; θ) converging to F (x; θ) does not necessarily imply the

partial derivatives of Ft(x; θ) converge to the partial derivatives of F (x; θ), so the

following lemma is needed.

Lemma 2. If A1′ is satisfied, and Ft(x; θ) satisfies the following conditions:

(i) Ft(x; θ) converges uniformly to F (x; θ) on [a, b]×Θ;

(ii) ∂1Ft(x, θ) and ∂2Ft(x, θ) are uniformly convergent on [a, b]×Θ, where a, b can take

value ±∞.

Then

∂1F (x, θ) = lim
t→∞

∂1Ft(x, θ),

∂2F (x, θ) = lim
i→∞

∂2Ft(x, θ).

Proof. Since ∂1Ft(x, θ) is a uniformly convergent sequence of continuous functions,
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we have

ϕ(x, θ) = lim
t→∞

∂1Ft(x, θ),

where the limit function ϕ(x, θ) is continuous on [a, b] w.r.t. x for fixed θ. Then, it

remains to show that ϕ(x, θ) = ∂1F (x, θ). Because∫ x

a

ϕ(η, θ)dη =

∫ x

a

lim
t→∞

∂1Ft(η, θ)dη = lim
t→∞

∫ x

a

∂1Ft(η, θ)dη,

then ∫ x

a

ϕ(η, θ)dη = lim
t→∞

[Ft(x, θ)− Ft(a, θ)]

= F (x, θ)− F (a, θ),

the second equality holds because of the uniform convergence of the original sequence

Ft(x, θ). Differentiating both sides w.r.t. x leads to ϕ(x, θ) = ∂1F (x, θ), i.e., ∂1F (x, θ) =

limt→∞ ∂1Ft(x, θ). Similarly, ∂2F (x, θ) = limt→∞ ∂2Ft(x, θ). �

Remark 2. If Xt
d→ X, by A1′, F (x; θ) is continuous w.r.t. x, supx∈[a,b] |Ft(x; θ) −

F (x; θ)| → 0, i.e., Ft(x; θ) converges uniformly to F (x; θ) w.r.t. x. Moreover, when Θ

is a compact set, pointwise convergence is equivalent to uniform convergence.

For ease of notation, let F(t) denote the c.d.f. from which X(t) has been sampled,

and note that F(t) is NOT the order statistics distribution. For example, suppose that

{xt, t = 0, 1, . . . , 5} is a sequence of observations of {Xt, t = 0, 1, . . . , 5} with c.d.f.’s

{Ft, t = 0, 1, . . . , 5}, which satisfies x0 < x5 < x3 < x2 < x1 < x4. So for this

realization, the 4th order statistic observation x(4) corresponds to x2, which is sampled

from X2 with c.d.f. F2, so F(4) corresponds to F2 for this sample. Similar to the i.i.d.

case, the estimator (4) is asymptotically unbiased under some mild conditions.

Theorem 2. Suppose that supnE[I2n] < ∞ and F(dαne)(x; θ) satisfies conditions (i)

and (ii) in Lemma 2. If A1′ and A2 hold, and dX/dθ exists, then E[In] → q′α as

n→∞.

Proof. Similar to the proof in Theorem 1, the quantile sensitivity of X can be

obtained by

q′α = E

[
dX

dθ

∣∣∣∣X = qα

]
= −∂2F (qα; θ)

∂1F (qα; θ)
. (8)

Equation (8) represents a conditional expectation of the derivative of the random

variable X as a quotient of partial derivatives of its c.d.f., i.e., −∂2F (X; θ)/∂1F (X; θ).
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Analogously, for the random variables {Xt, t = 0, 1, 2, . . .},

E

[
dXt

dθ

∣∣∣∣Xt = x

]
= −∂2Ft(x; θ)

∂1Ft(x; θ)
, t = 0, 1, 2, . . . . (9)

Now consider the expectation of dX(dαne)/dθ. By the definition of F(dαne)(x; θ), it

is one of {Ft(x; θ), t = 0, 1, 2, . . .}, so it satisfies the conditions in Lemma 1 with A1

replaced by A1′, so

E

[
dX(dαne)

dθ

∣∣∣∣X(dαne) = x

]
= −

∂2F(dαne)(x; θ)

∂1F(dαne)(x; θ)
. (10)

Then, similar to Equation (6),

E[In] = E

[
−
∂2F(dαne)(q̂

n
α; θ)

∂1F(dαne)(q̂nα; θ)

]
.

Next, we will prove |∂iF(dαne)(q̂
n
α; θ)− ∂iF (qα, θ)| → 0 in distribution for i = 1, 2 as

n→∞.

|∂iF(dαne)(q̂
n
α; θ)−∂iF (qα, θ)| ≤ |∂iF(dαne)(q̂

n
α; θ)−∂iF (q̂nα, θ)|+|∂iF (q̂nα, θ)−∂iF (qα, θ)|.

By Lemma 2, ∂iF(dαne)(x, θ) is uniformly convergent to ∂iF (x, θ) for i = 1, 2. So for

any ε > 0, there exists N ′ such that for all n ≥ N ′, |∂iF(dαne)(q̂
n
α; θ)−∂iF (q̂nα, θ)| < ε/2

a.s., for all θ ∈ Θ. By A1′, F (x, θ) is continuously differentiable w.r.t. both arguments,

i.e., ∂iF (x, θ) is continuous w.r.t both x and θ for i = 1, 2. Then by A2, for any ε > 0,

there exists N ′′ such that for all n ≥ N ′′, |∂iF (q̂nα, θ)−∂iF (qα, θ)| < ε/2 in distribution.

So it is easy to prove that |∂iF(dαne)(q̂
n
α; θ)−∂iF (qα, θ)| → 0 in distribution for i = 1, 2

as n→∞, i.e., ∂iF(dαne)(q̂
n
α; θ)→ ∂iF (qα, θ) in distribution for i = 1, 2 as n→∞. By

A1′,
∂2F(dαne)(q̂

n
α; θ)

∂1F(dαne)(q̂nα; θ)

d→ ∂2F (qα; θ)

∂1F (qα; θ)
.

Similar to Equation (7), ∂2F(dαne)(x; θ)/∂1F(dαne)(x; θ) is uniformly integrable. There-

fore, E[In]→ q′α as n→∞. �

Remark 3. (i) If all {Ft(x; θ), t = 0, 1, . . .} satisfy (i) and (ii) in Lemma 2, F(dαne)(x; θ)

satisfies the conditions automatically. (ii) Although Xt
d→ X, i.e., Ft(x; θ) → F (x; θ)

as t → ∞, it does not directly imply F(dαne)(x; θ) → F (x; θ) as n → ∞. However,

after an appropriate “warm-up” period, all the c.d.f’s can be regarded as the same

as the steady-state c.d.f. F (x; θ). Technically, as the length of the warm-up period
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n′ → ∞, then Fn′+t(x; θ) → F (x; θ). Since F(dαne)(x; θ) is one of {Fn′+t(x; θ), t =

0, 1, 2, . . .}, F(dαne)(x; θ) → F (x; θ). We use this idea in the next section. Consider

a long run simulation sequence, and divide this sequence into k batches of batch size

mi, i = 1, 2, . . . , k. When m1 → ∞, all the c.d.f’s of Xt in the ith batch (i ≥ 2)

converge to the steady-state c.d.f. F (x; θ). Hence, in each batch, the corresponding

F(dαmie)(x; θ)→ F (x; θ).

2.3. Batched estimator

In general, the IPA estimator In is asymptotically unbiased but not necessarily

consistent (Hong [18] and Jiang and Fu [21]). To estimate the quantile sensitivity, we

divide this long-run sequence into batches, and take the mean of the IPA estimators

derived from each batch, i.e., the nonoverlapping batch means method, widely used

simulation method for analyzing the steady-state mean of a stochastic process (Steiger

and Wilson [31]). By Theorem 1 and 2, In is asymptotically unbiased, i.e., E[In]→ q′α,

so this batched estimator may also be regarded as approximating the expected value

of In via the Strong Law of Large Numbers (SLLN).

Specifically, for a sequence of length n {Xt, t = 0, 1, 2, . . . , n− 1}, take k batches of

length mi, i = 1, 2, . . . , k, where n =
∑k
i=1mi, so the ith batch is based on samples

X∑i−1
j=1mj

, X∑i−1
j=1mj+1, . . . , X

∑i−1
j=1mj+mi−1

.

Let Ii,mi denote the IPA estimator derived from the ith batch with batch size mi, then

the batched estimator is given by

q̂′mα,k =
1

k

k∑
i=1

Ii,mi . (11)

In practice, we often take mi to be a constant, but in some cases the mi may be

different or even random variables. For ease of notation, denote m = minimi, so when

letting m→∞, it means all mi →∞.

Next, we study the consistency of the batched estimators. Consider a regenerative

process, where choosing the batch size based on regenerative cycles eliminates the

dependence among {Ii,mi , i = 1, 2, . . . , k}, so V ar(q̂′mα,k) = 1/k2
∑k
i=1 V ar(Ii,mi). Sup-

pose that maxi V ar(Ii,mi) <∞, when k →∞, V ar(q̂′mα,k) < 1/kmaxi V ar(Ii,mi)→ 0,

and we can apply Chebyshev’s inequality to prove weak consistency of the batched
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estimator. More generally, we have the following theorem for stationary processes.

Theorem 3. Suppose that for each i, supmi E[I2i,mi ] < ∞ and V ar(q̂′mα,k) → 0 as

k → ∞. If A1 and A2 hold, and dX/dθ exists, then q̂′mα,k → q′α in probability as

m→∞ and k →∞.

Proof. Let m→∞, by Theorem 1, for each i, E[Ii,mi ]→ q′α, then

E[q̂′mα,k] = E

[
1

k

k∑
i=1

Ii,mi

]
=

1

k

k∑
i=1

E [Ii,mi ]→ q′α.

By Chebyshev’s inequality, for any ε > 0,

Pr{|q̂′
m

α,k − E[q̂′mα,k]| ≥ ε} ≤
V ar[q̂′

m

α,k]

ε2
.

Since supmi E[I2i,mi ] <∞ for each i, when k →∞, V ar(q̂′mα,k)→ 0, then q̂′mα,k → E[q̂′mα,k]

in probability, so limm→∞ limk→∞ q̂′mα,k = q′α in probability.

Similarly, when k → ∞ first, q̂′mα,k → E[q̂′mα,k] in probability. Then, let k → ∞, and

it is easy to prove limk→∞ limm→∞ q̂′mα,k = q′α in probability. �

For non-stationary processes in subsection 2.2, we can still prove that the batched

estimator (11) is weakly consistent. According to Remark 3, if m1 → ∞, the c.d.f.’s

from the second batch onwards follow the steady-state c.d.f., where the first batch can

be regarded as the warm-up period. Then letting the number of batches k →∞ yields

consistency of the batched estimator as formalized in the following theorem.

Theorem 4. Suppose that for each i, supmi E[I2i,mi ] < ∞ and V ar(q̂′mα,k) → 0 as

k → ∞. Additionally, {Ft(x; θ), t = 0, 1, 2, . . .} satisfies condition (ii) in Lemma 2.

If A1′ and A2 hold, and dX/dθ exists, then q̂′mα,k → q′α in probability as m → ∞ and

k →∞.

Proof. Separate q̂′mα,k into two parts, the first batch and the following batches, i.e.,

q̂′mα,k =
1

k

k∑
i=1

Ii,mi =
1

k
I1,m1 +

1

k

k∑
i=2

Ii,mi ,

then,

E[q̂′mα,k] =
1

k
E [I1,m1

] +
1

k

k∑
i=2

E [Ii,mi ] .
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When m → ∞, by Remark 3, we know E [Ii,mi ] → q′α, for i = 2, . . . , k, then

E[q̂′mα,k] → (1/k)γ + (1− 1/k)q′α, where γ = limm1→∞E [I1,m1
] < ∞, since for each i,

supmi E[I2i,mi ] <∞. By Chebyshev’s inequality, for any ε > 0,

Pr{|q̂′
m

α,k − E[q̂′mα,k]| ≥ ε} ≤
V ar[q̂′

m

α,k]

ε2
.

By assumption when k →∞, V ar(q̂′mα,k)→ 0, and (1/k)γ+(1−1/k)q′α → q′α. Therefore

limm→∞ limk→∞ q̂′mα,k = q′α in probability.

Similarly, when k → ∞, first, q̂′mα,k → E[q̂′mα,k] in probability. Then, let k → ∞, and

it is easy to prove E[q̂′mα,k]→ q′α. �

Remark 4. (i) Note that in Theorem 4, we do NOT need F(dαne)(x; θ) to satisfy

condition (i) in Lemma 2, because, F(dαne)(x; θ) satisfies this condition automatically

after the second batch, since the effect of the bias of the first batch is eliminated by

letting k → ∞. (ii) For i.i.d. sequences, the SLLN can be used to prove the strong

consistency of the batched estimator, but for nonstationary dependent sequences,

neither the SLLN nor the Ergodic Theorem can be directly applied.

In the i.i.d. case, the batched estimator is the average of the IPA estimators, for

which a central limit theorem is available directly. However, in the dependent case,

any central limit theorem requires additional special conditions, such as the φ-mixing

condition. In the next section, we consider two common dependent conditions, for

which central limit theorems can be established.

3. Regenerative processes and mixing processes

Regenerative processes are used to model stochastic phenomena in which an event

occurs repeatedly over time, and the times between occurrences are i.i.d. Alternatively,

mixing conditions are used to measure dependence in stochastic processes (cf. Doukhan

[7]), and a common mixing condition is the φ-mixing condition. In this section, we

study these two types of dependent processes.

3.1. Quantile sensitivity for regenerative processes

Let {Xt, t = 0, 1, 2, . . .} be a real-valued discrete regenerative stochastic process s.t.

there exists a sequence 0 = T0 ≤ T1 ≤ T2 ≤ . . . called regenerative points, which makes
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the process {Xt, t ≥ Ti}, i = 1, 2, . . . equal in distribution to the process {Xt, t ≥ T1}.

The segment of the process {Xt, Ti−1 ≤ t ≤ Ti, i = 1, 2, . . .} is called the ith cycle,

and the set of regenerative cycles form an i.i.d sequence. Classical examples of discrete

regenerative processes are ergodic Markov chains in discrete time. In this paper, we

consider the non-delayed regenerative processes, i.e., the first cycle {Xt, T0 ≤ t ≤ T1}

has the same c.d.f. as other cycles. Denote Ni = Ti − Ti−1 as the length of the ith

cycle, and µ = E[Ni] as the expected length of cycles. By Theorem 1.2 of Chapter 4 in

Asmussen [2], if µ is finite, Xt converges to a random variable X in distribution (the

steady-state distribution). For example, in a G/G/1 queue, denote Wi as the waiting

time of the ith customer, and Wi is a regenerative process where a regeneration occurs

when the system is idle. Assuming that the mean service time is less than the mean

interarrival time, then E[Ni] is finite, and Wi converges to a steady-state random

variable W as i → ∞. As in the last section, Ft(x; θ) and F (x; θ) denote the c.d.f’s.

of Xt and X, respectively. Using the special structure of regenerative processes, we

select the batch size based on cycles.

Suppose that the simulation runs ñ cycles, generating X0, X1, . . . , XTñ−1 with total

number of samples Tñ. Then the order statistics of this sequence and their correspond-

ing IPA estimator are given by

X(1) ≤ X(2) ≤ · · · ≤ X(dαTñe) ≤ · · · ≤ X(Tñ),

dX(1)

dθ
,
dX(2)

dθ
, . . . ,

dX(dαTñe)

dθ
, . . . ,

dX(Tñ)

dθ
.

Denote q̂ñα = X(dαTñe) and Iñ = dX(dαTñe)/dθ. By Iglehart [19], we know in a

neighbourhood of qα, if the derivative of density of X exists and bounded, then

q̂ñα − qα
σα/(µ∂1F (qα; θ)ñ

1
2 )

d→ N (0, 1), as ñ→∞, (12)

where σα is the standard deviation of Yi(qα) − Niα, and Yi(qα) is the number of

observations in the ith cycle which are less than or equal to qα. Equation (12) also

implies that q̂ñα → qα in distribution as ñ→∞. Then Theorem 1 holds with assumption

A2 replaced by A2′:

A2′. In a neighbourhood of qα, ∂21F (x; θ) exists and is bounded by some K < ∞

for all x.
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Corollary 1. Suppose that supñE[I2ñ] < ∞ and F(dαTñe)(x; θ) satisfies conditions (i)

and (ii) in Lemma 2. If A1′ and A2′ hold, and dX/dθ exists, then E[Iñ] → q′α as

ñ→∞,

We now provide an alternative batched estimator based on regenerative cycles,

analogous to the estimator used for estimating quantiles in Seila [26]. Suppose that

these ñ cycles are divided into k̃ batches with each batch containing m̃ cycles. The ith

batch has sample size Mi(m̃) = Tim̃−T(i−1)m̃ = N(i−1)m̃+1 + . . .+Nim̃, i.e., it contains

samples XT(i−1)m̃
, XT(i−1)m̃+1, . . . , XTim̃−1. The lth-order statistic derived from the ith

batch will be denoted by the subscript (l, i), i.e., for the ith batch and sample size

Mi(m̃),

X(1,i) ≤ X(2,i) ≤ · · · ≤ X(dαMi(m̃)e,i) ≤ · · · ≤ X(Mi(m̃),i).

The corresponding derivatives w.r.t. θ are given by

dX(1,i)

dθ
,
dX(2,i)

dθ
, . . . ,

dX(dαMi(m̃)e,i)

dθ
, . . . ,

dX(Mi(m̃),i)

dθ
.

We batch the k̃ estimators, and get the batched estimator

q̂′m̃
α,k̃

=
1

k̃

k̃∑
i=1

Ii,m̃. (13)

Although {Xt, t = 0, 1, . . .} is regenerative, establishing that their derivatives {dXt/dθ,

t = 0, 1, . . .} are regenerative requires additional special structure. One condition is

to assume dXt/dθ = φ(Xt; θ), i.e., the derivative of Xt is only a function of Xt and does

not contain other random variables. By A1, we know φ(Xt; θ) = −∂2F (Xt; θ)/∂1F (Xt; θ)

is continuous w.r.t the first argument. Since Xt is regenerative, then dXt/dθ =

φ(Xt; θ) is still regenerative. Glasserman [12] considered more general conditions for

regenerative processes whose derivatives are also regenerative. We summarize the

results in the following lemma.

Lemma 3. (Glasserman [12].) Denote Xt := Xt(θ, Ut(θ)), where the input Ut(θ), t =

0, 1, 2, . . . is an i.i.d. sequence. Suppose that the following conditions are satisfied:

(i) Each Xt and Ut, t ≥ 0, is continuous in a neighbourhood of some point θ and

differentiable at θ a.s.;

(ii) {Xt, t = 0, 1, 2, . . .} is regenerative such that for any open recurrent set B and
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some open Ai, i = 1, . . . , r, if Xt(θ) ∈ B and Un+i(θ) ∈ Ai, i = 1, . . . , r, then

Xt+r(θ) = h(Un(θ), . . . , Un+r(θ)), where h is a measurable function: A1×. . .×Ar → B;

(iii) Pr{h is continuously differentiable at (U1(θ), . . . , Ur(θ))|Ui(θ) ∈ Ai, i = 1, . . . , r} =

1.

Then {dXt/dθ, t = 0, 1, . . .} is regenerative.

As an example, consider the waiting time of an M/M/1 queue, where {Ui(θ)} are

the input exponential random variables and Xn is the waiting time. If Xn = 0, Xn+r

can be expressed in terms of Un+i, i = 1, . . . , r.

As the IPA estimators are derived from different regenerative cycles, and each batch

has the same number of cycles, they are automatically i.i.d. If supm̃E[I2m̃] < ∞,

then V ar(Im̃) < ∞ and V ar(q̂′m̃
α,k̃

) = 1/k̃V ar(Im̃) → 0 as k → ∞, which satisfies

the conditions in Theorem 3. The following corollary states weak consistency of the

batched estimator for regenerative processes.

Corollary 2. Under the assumptions in Lemma 3, suppose that supm̃E[I2m̃] < ∞. If

A1′ and A2′ are satisfied, and dX/dθ exists, then q̂′m̃
α,k̃
→ q′α in probability as m̃→∞

and k̃ →∞.

In the i.i.d. setting, E[q̂mα − qα] = O(m−1) and E[(q̂mα − qα)2] = O(m−1), where m

is the sequence sample size, but the convergence rate of the quantile estimator in the

dependent setting is not well studied, and clearly depends on the type of dependence,

so we assume respective rates O(m̃−γ1) and O(m̃−γ2), γ1, γ2 > 0, where γ1 and γ2 are

used in the following central limit theorem for the batched estimator (13) similar to

the i.i.d. case. Although charactering the convergence rate is beyond the scope of this

paper, in the first numerical example, γ1 and γ2 lie in [0.5, 1].

Theorem 5. Assume ϕ(x) = −∂2F (x; θ)/∂1F (x; θ) is twice differentiable and |ϕ′′(x)| <

K, E[q̂m̃α − qα] = O(m̃−γ1) and E[(q̂m̃α − qα)2] = O(m̃−γ2). Under the assumptions in

Corollary 2, if infm̃ V ar(Im̃) > 0, then

q̂′
m̃

α,k̃ − q′α
σ(q̂′

m̃

α,k̃)

d→ N (0, 1) as m̃→∞, k̃ →∞ and
k̃

1
2

m̃γ
→ 0, (14)

where σ(q̂′
m̃

α,k̃) is the standard deviation of q̂′
m̃

α,k̃ and γ = min{γ1, γ2}.
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Proof. First, we get the convergence rate of the quantile sensitivity estimator Im̃.

By the proof of Theorem 2, when m̃→∞,

E[Im̃]− q′α = E[ϕ(q̂m̃α )− ϕ(qα)].

By Taylor’s theorem,

ϕ(q̂m̃α )− ϕ(qα) = ϕ′(qα)(q̂m̃α − qα) + ϕ′′(ξ)(q̂m̃α − qα)2,

where ξ is between q̂m̃α and qα. Then

|E[Im̃]− q′α| = |E[ϕ(q̂m̃α )− ϕ(qα)]| ≤ |ϕ′(qα)||E[q̂m̃α − qα]|+ |ϕ′′(ξ)||E[(q̂m̃α − qα)2]|.

Since ϕ′′(x) is bounded by K, the convergence rate is determined by the slowest of

E[q̂m̃α − qα] and E[(q̂m̃α − qα)2], so E[Im̃]− q′α is O(m̃−γ).

Next the left-hand side of Equation (14) can be written as

q̂′
m̃

α,k̃ − q′α
σ(q̂′

m̃

α,k̃)
=
q̂′
m̃

α,k̃ − E
[
q̂′
m̃

α,k̃

]
σ(q̂′

m̃

α,k̃)
+
E
[
q̂′
m̃

α,k̃

]
− q′α

σ(q̂′
m̃

α,k̃)
.

By definition, q̂′
m̃

α,k̃ is the sample average of i.i.d replications of Im̃, and by the Lindeberg-

Levy central limit theorem, the first term on the right-hand side of (14) satisfies

q̂′
m̃

α,k̃ − E
[
q̂′
m̃

α,k̃

]
σ(q̂′

m̃

α,k̃)

d→ N (0, 1) as k̃ →∞.

By condition E[Im̃]− q′α = O(m̃−γ), |E[Im̃]− q′α| can be bounded by L/(m̃γ) for some

constant L. Since V ar(q̂′m̃
α,k̃

) = 1/k̃V ar(Im̃) and infm̃ V ar(Im̃) > 0, we can obtain∣∣∣∣∣∣
E
[
q̂′m̃
α,k̃

]
− q′α

σ(q̂′m̃
α,k̃

)

∣∣∣∣∣∣ ≤ L

(V ar[Im̃])
1
2

k̃
1
2

m̃γ
→ 0 as

k̃
1
2

m̃γ
→ 0.

The theorem is proved. �

The batched estimator for regenerative processes is different from the previous

section. To distinguish these two batched estimators, we call the batched estimator

(11) based on deterministic batch sizes the deterministic batched estimator (DET),

and the batched estimator in this subsection based on a fixed number of regenerative

cycles the regenerative batched estimator (REG).
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At the end of this section, we compare the different two batched estimators. Intu-

itively, the DET is easy to implement, but it does not exploit the structure of regenera-

tive sequences. In contrast, the REG takes full advantage of the regenerative properties.

Moreover, by Meketon and Heidelberger [24], the last cycle contains significantly more

information than a typical cycle. Hong [18] used the DET to estimate the quantile

sensitivities of the waiting time of a G/G/1 queue, and we will compare these two

batched estimators for the same numerical example in the next section.

3.2. Quantile sensitivity for other classes of dependent processes

In this subsection, we consider other classes of dependent processes. As discussed

above, the key for the validity of the IPA estimator is the quantile estimator converging

to the true quantile. Therefore, for other classes of dependent segments that satisfy

this condition, we can still use the previous method to estimate the quantile sensitivity.

Some other dependent conditions that have been considered include m-dependent

processes and φ-mixing processes (Sen [27], Sen [28], and Heidelberger and Lewis [14]),

short-range dependent (SRD) linear processes (Hesse [16]), and long-range dependent

(LRD) linear processes (Ho and Hsing [17]). In this subsection, we consider dependent

processes satisfying a φ-mixing condition, which was considered in the stationary

setting by Liu and Hong [23] for a kernel estimator.

All the notations are the same as in Section 2. First, we introduce the φ-mixing

condition. Let Fk0 and F∞k+n denote the σ-field generated by {Xt, t ≤ k} and {Xt, t ≥

k + n}, respectively. If A ∈ Fk0 and B ∈ F∞k+n, then for all k and n ≥ 1,

|Pr(B|A)− Pr(B)| ≤ φ(n), φ(n) ≥ 0,

where φ(n) is non-increasing w.r.t. n and limn→∞ φ(n) = 0. Sen [28] studied the

Bahadur representation of sample quantile for φ-mixing sequences. Denote

A0(φ) =

∞∑
n=1

(φ(n))
1
2 ,

and

vi = E [1{qα ≥ X0}1{qα ≥ Xi}] , i = 0, 1, 2, . . . .

Let v2 = v0 + 2
∞∑
i=1

vi. By Sen [28], A0(φ) < ∞ implies v < ∞. The main theorem in

Sen [28] shows if A0(φ) <∞, 0 < ∂1F (x; θ) <∞ and ∂21F (x; θ) exists and is bounded,
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then
q̂nα − qα

v/(∂1F (qα; θ)n
1
2 )

d→ N (0, 1), as n→∞.

Therefore, A2 can be replaced by A2′′:

A2′′. A0(φ) <∞.

Corollary 3. Suppose that supnE[I2n] < ∞ and F(dαne)(x; θ) satisfies conditions (i)

and (ii) in Lemma 2. If A1 and A2′′ are satisfied, and dX/dθ exists, then E[In]→ q′α

as n→∞.

Now we take all the batch sizes to be the same, i.e., mi ≡ m for all i, and the batched

estimator is given by q̂′mα,k = 1/k
∑k
i=1 Ii,m. Suppose that {(Xt, dXt/dθ), t ≥ 0} satisfies

the φ-mixing condition, the same condition required in Liu and Hong [23]. Under

certain conditions, {Xt, t ≥ 0} φ-mixing implies that {dXt/dθ, t ≥ 0} is φ-mixing.

For example, if there is a function f satisfying some mild conditions, e.g., it is a

linear function, such that {dXt/dθ = f(Xt), t ≥ 0}, then dXt/dθ satisfies a φ-mixing

condition. When m→∞ for all i 6= j, Cov(Ii,m, Ij,m)→ 0. Then

V ar(q̂′mα,k) =
1

k2

 k∑
i=1

V ar(Ii,m) + 2
∑
i 6=j

Cov(Ii,m, Ij,m)

→ 0 as m, k →∞,

and by Theorem 3, we obtain the following corollary.

Corollary 4. Suppose that for each i, supmE[I2i,m] <∞, and the sequence {(Xt, dXt/dθ),

t ≥ 0} satisfies the φ-mixing condition. If A1 and A2′′ are satisfied, then q̂′mα,k → q′α in

probability as m→∞ and k →∞.

The sequence Ii,m, i = 1, 2, . . . is derived from dXt/dθ, so it satisfies the φ-mixing

condition. By Deo [6], if A2′′ holds, supmE[I2i,m] < ∞ for each i, and σ2 = E[I2i,m] +

2
∑∞
i6=j E[Ii,mIj,m]− (E[Ii,m])2 > 0, then

q̂′
m

α,k − E
[
q̂′
m

α,k

]
σ/
√
k

d→ N (0, 1) as k →∞.

Therefore, similar to regenerative processes, we have a central limit theorem for the

batched estimator, with the proof being nearly identical as for regenerative processes.

Corollary 5. Assume ϕ(x) = −∂2F (x; θ)/∂1F (x; θ) is twice differentiable and |ϕ′′(x)| <

K, E[q̂mα − qα] = O(m−γ1) and E[(q̂mα − qα)2] = O(m−γ2), where γ = min{γ1, γ2}.
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Under the assumptions in Corollary 4, if σ2 = E[I2i,m]+2
∑∞
i6=j E[Ii,mIj,m]−(E[Im]) >

0, then

q̂′
m

α,k − q′α
σ/
√
k

d→ N (0, 1) as m→∞, k →∞ and
k

1
2

mγ
→ 0.

In this subsection, we used φ-mixing processes as an example. However, the frame-

work can be adapted to other dependent processes as long as the appropriate quantile

estimator converges to the true quantile.

4. Numerical Experiments

In this section, we illustrate the performance of the estimators on two numerical

examples: the G/G/1 queue and the discrete Ornstein-Uhlenbeck process, i.e., AR(1)

process. For the G/G/1 queue, we consider the waiting (queueing) time, which is

a regenerative process, and compare the REG estimator with the DET estimator

considered in Hong [18]. Then, the discrete Ornstein-Uhlenbeck process, which is a m-

dependent sequence, is considered. Under some mild conditions, the discrete Ornstein-

Uhlenbeck process is stationary Gaussian. By Bradley [5], φ-mixing is equivalent to

m-dependence for stationary Gaussian sequence.

4.1. G/G/1 Queue

Let Wi denote the waiting time of the ith customer in a FCFS G/G/1 queue, which

by the Lindley equation, satisfies the recursion Wi+1 = (Wi+Xi)
+, where Xi = Si−Ai,

Si is the service time of the ith customer, and Ai is interarrival time between the ith

and (i + 1)st customer. Under appropriate stability conditions, Wi is a regenerative

process w.r.t. indices of customers who initiate busy periods. The IPA estimator of

Wi is given by direct differentiation:

dWi+1

dθ
=

(
dWi

dθ
+
dXi

dθ

)
1{Wi+Xi≥0}.

Similar to Section 8 in Hong [18], we consider the setting where Ai and Si are i.i.d.

exponentially distributed random variables with means µA and µS , respectively. When

µA > µS , the queue is stable, and the steady-state waiting time W is exponentially

distributed with rate (1/µS)− (1/µA). Then

∂qα
∂µA

=

(
µS

µA − µS

)2

log(1− α),
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∂qα
∂µA

= −
(

µA
µA − µS

)2

log(1− α).

First, we compare the two batched estimators, i.e., DET and REG, for µA = 10 and

µS = 8. The simulation experiments fixed the total number of regenerative cycles at

ñ = 10000 per replication, divided into 100 batches (k̃ = 100) of 100 cycles (m̃ = 100).

Since DET uses fixed batch sizes rather than cycles, the total number of customers

was rounded up to allow equal batch sizes. For example, if 10000 cycles generates

50112 customers served in a replication, the simulation replication is continued until

50200 customers are served, so that DET uses 100 batches of 502 customers. All

the results are based on 1000 independent replications. The absolute bias of the two

batched estimators are plotted against different α in Fig.1, the mean square error

(MSE) in Fig.2, and the coverage probabilities in Fig.3. In both Fig.1 and Fig.2, the

Figure 1: Absolute bias of quantile sensitivities w.r.t. µA (left panel) and µS (right panel)
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Figure 2: MSE of quantile sensitivities w.r.t. µA (left panel) and µS (right panel)
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performance of REG is generally better than DET for α < 0.8. When α > 0.8, both

absolute bias and MSE increase significantly, more so for REG than for DET. Fig.3

shows the estimated coverage probabilities of the 90% confidence interval. When α is
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Figure 3: Coverage probabilities of quantile sensitivities w.r.t. µA (left panel) and µS (right

panel)
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far from 0 or 1, the coverage probabilities are close to 0.9. When α is near 0 or 1, the

coverage probabilities decrease significantly. Fig.3 indicates that the REG coverage

probabilities are more stable.

Next, we consider the tradeoff between the number of cycles in each batch and the

number of batches for the REG. Denote the number of cycles in each batch by m̃ = ñδ

and the number of batches by k̃ = ñ1−δ. Three values for the total number of cycles

were tested: ñ = 1000, 10000, 100000, as a function of δ for different values of the traffic

intensity ρ = µS/µA and the quantile level α. From Fig.4, Fig.5 and Fig.6, the MSE

Figure 4: MSE of quantile sensitivities w.r.t. µA; traffic intensity ρ = 0.8; α = 0.2, 0.4 and

0.8 in the left, middle, and right panels, respectively.
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Figure 5: MSE of quantile sensitivities w.r.t. µA; traffic intensity ρ = 0.4; α = 0.2, 0.4 and

0.8 in the left, middle, and right panels, respectively.
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increases with δ in most situations. However, if δ is small, i.e, the number of cycles in

each batch is small, the bias is large, and the coverage probabilities are not close to the
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Figure 6: MSE of quantile sensitivities w.r.t. µA; traffic intensity ρ = 0.1; α = 0.2, 0.4 and

0.8 in the left, middle, and right panels, respectively.
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theoretical probability. For ñ = 10000, Table 1 gives the 90% coverage probabilities

and MSE for different combinations of m̃ and k̃.

Table 1: Coverage probabilities (CP) and the MSE with different traffic intensities and batch

sizes (ñ = 10000)

ρ = 0.8 ρ = 0.4 ρ = 0.2

m̃ k̃ CP MSE CP MSE CP MSE

20 500 0.001 38.9 0.900 0.0109 0.843 0.0001

50 200 0.791 5.08 0.897 0.0316 0.886 0.0003

100 100 0.895 10.4 0.869 0.0557 0.881 0.0005

200 50 0.863 19.2 0.860 0.102 0.825 0.0010

500 20 0.825 39.7 0.830 0.248 0.775 0.0023

4.2. Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck (OU) process is given by the stochastic differential equation

dXt = θ(µ−Xt)dt+ σdWt, t ≥ 0,

where θ > 0, µ > 0 and σ > 0 are parameters, and Wt denotes the standard Wiener

process. We consider the discrete-time OU process, i.e., AR(1) process:

Xt+1 = Xt + θ(µ−Xt)∆t+ σ
√

∆tZt, t = 0, 1, . . . ,

where ∆t is the discretization interval and {Zt, t = 0, 1, . . .} are i.i.d. standard normal

random variables. The limiting distribution of Xt is normally distributed with mean µ

and variance σ2/(2θ−θ2∆t), so we can obtain an analytical expression for the quantile.
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Let θ = 0.2, µ = 0.1, σ = 0.1, ∆t = 0.05, and total sequence length N = 106 with

batch size m = 104 and total number of batches k = 100. Again, all results are based

on 1000 replications. Fig.7 indicates that the batched estimator MSE is quite small

and the estimated probability coverage is close to the theoretical value of 90%. Similar

to the G/G/1 queue, when the quantile level α tends to 0 or 1, the MSE increases

substantially and the coverage probability deteriorates. Fig. 8 shows the bias and

MSE as the total sequence length N increases for fixed k = 100 and α = 0.8.

Figure 7: MSE and 90% coverage probability of quantile sensitivity for the OU example

(N = 106, m = 104, k = 100)
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Figure 8: Bias and MSE of quantile sensitivity for the OU example (K = 100, α = 0.8)
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5. Conclusion

In this paper, we estimate the quantile sensitivities of dependent sequences via

IPA, and construct a batched estimator which is asymptotically unbiased and weakly

consistent. Two widely used processes, regenerative processes and φ-mixing processes,

are studied. For regenerative processes, we improve the batched estimator based on

regenerative cycles, and a central limit theorem is given. For φ-mixing processes, we

also provide a central limit theorem, and the framework can be used for other classes
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of dependent processes with quantiles that can be estimated by the corresponding

sequence of order statistics. Two numerical examples, the G/G/1 queue and discrete

OU process, i.e., AR(1) process, are given to illustrate the effectiveness of the esti-

mators. For both numerical examples, when α is close to 0 or 1, the performance

of the estimators deteriorates, as the bias becomes significantly large. Bias reduction

methods such as jackknifing can improve the performance of the estimators (Jiang, Fu

and Xu [22]).
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