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IThis work was supported in part by the National Science Foundation (NSF) under Grants
CMMI-0856256, CMMI-1362303, CMMI-1434419, and EECS-0901543, by the Air Force of Sci-
entific Research (AFOSR) under Grant FA9550-15-10050, and by the National Natural Science
Foundation of China (Project 11171256).

∗Corresponding author
Email address: guajiang@cityu.edu.hk (Guangxin Jiang)

Preprint submitted to Elsevier August 31, 2016



1. Introduction

Lévy processes can model critical characteristics observed in financial mar-

kets, such as heavy tails and jumps; see Cont [1] and Schoutens [2] for a survey.

Due to the complicated nature of Lévy process models, Monte Carlo simulation is

routinely used to price the derivatives (Carr and Madan [3], Glasserman [4]) and

estimate Greeks (Fu [5], Glasserman and Liu [6], Kawai [7]). Although Monte

Carlo simulation can solve high-dimensional problems, variance reduction tech-

niques are often needed to improve the computational efficiency; see Glasserman

[4] for a survey. For Lévy processes models, variance reduction techniques used

in derivatives pricing include importance sampling (Kawai [8]), control variates

(Dingeç and Hörmann [9]), stratified sampling (Kawai [10]), etc.

In this paper, we focus on importance sampling. The basic idea of importance

sampling is to find a new probability measure such that the variance of the impor-

tance sampling estimator under the new probability measure should be smaller or

even zero (the perfect probability measure, cf. Homem-de-Mello [11]). In prac-

tice, the perfect probability measure is generally unavailable, and the importance

sampling problem can be formulated as a parametric optimization problem. Based

on Monte Carlo sampling techniques, Su and Fu [12] used stochastic approxima-

tion (SA) to solve the resulting stochastic optimization problem in the geometric

Brownian motion setting (also refer to Lapeyre and Lelong [13]), and Kawai [14]

and Kawai [8] extended the approach to Lévy processes.

However, in SA, the proper choice of step sizes is difficult. We consider an

alternative approach: sample average approximation (SAA) (Shapiro [15], Kim

et al. [16]). SAA combined with a good deterministic algorithm has proven ef-

fective for solving certain classes of stochastic optimization problems where the
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classical SA numerical procedures perform poorly (Nemirovski et al. [17]). In

this paper, we propose a new gradient-based search optimization procedure com-

bining SAA with Newton iteration to find the optimal parameter of the Esscher

measure change. For gradient estimation, see Fu [18] for survey. Jourdain and

Lelong [19] and Badouraly-Kassim et al. [20] used Newton iteration algorithm on

SAA to find the optimal parameters in Black-Scholes model and jump diffusion

models, respectively, by exploiting the special structures of these two models.

In our work, we consider more general Lévy process models. We show that

importance sampling framework naturally satisfies the requirements for using

SAA, and provide convergence proofs based on the classical results in SAA. The

rest of the paper is organized as follows. In Section 2, we briefly review Lévy

processes and the Monte Carlo method with importance sampling. Section 3 in-

troduces the proposed SAA-Newton iteration method and analyzes the solution

properties. Based on these, an efficient algorithm is given. We also provide a

simple way to verify the conditions in the theorems. Section 4 concludes.

2. Preliminaries

2.1. Lévy processes models

Let X = {Xt, t ≥ 0} be a d-dimensional stochastic process defined on a

probability space (Ω,F ,P), satisfying the following conditions:

(1) X0 = 0 a.s.

(2) X has independent and stationary increments.

(3) X is stochastically continuous, i.e., limt→sP(||Xt − Xs|| > a) = 0, for all

a > 0 and s ≥ 0, where || · || is the Euclidean norm.

Then X is a Lévy process.
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Let 〈·, ·〉 denote the inner product. Xt is infinitely divisible for each t ≥ 0, and

through the Lévy-Khintchine formula, its characteristic function can be written as

ΦXt(u) = EP
[
ei〈Xt,u〉

]
= exp

{
t

(
i〈b, u〉 − 1

2
〈u,Au〉

+

∫
Rd−{0}

[
ei〈u,y〉 − 1− i〈u, y〉1B1(0)(y)ν(dy)

])}
,

where u ∈ Rd, b ∈ Rd, A is a non-negative definite symmetric d × d matrix,

and ν is a Lévy measure on Rd − {0}. A measure ν is a Lévy measure if it

satisfies
∫
Rd−{0} (|y|2 ∧ 1) ν(dy) <∞. Let Λ denote the process parameters, e.g.,

Λ = (σ, ν, θ) for the VG process and Λ = (µ, σ) for Brownian motion, which

determine the corresponding processes.

Let F (X) be the payoff of the financial derivative, given by

F (X) = F (Xt; 0 ≤ t ≤ T ),

where T is the maturity. The goal is to calculate the discounted expectation of

F (X).

2.2. Importance sampling and a parametric optimization problems

To improve computing efficiency, variance reduction techniques are routinely

used with Monte Carlo simulation. In this paper, we focus on importance sam-

pling. In the Black-Scholes model, the drift is changed (Glasserman et al. [21],

Su and Fu [12]). For Lévy processes, the Esscher measure change is commonly

used (Kawai [8]).

Let ϕt(λ) denote the cumulant generating function of Xt, i.e.,

ϕt(λ) = logEP
[
e〈λ,Xt〉

]
= log ΦXt(−iλ),
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where λ ∈ C ⊆ Rd and C is a nonempty convex compact set. Given another

probability measurePλ that is absolutely continuous w.r.t. P, the Radon-Nikodym

derivative is given by

dPλ
dP

∣∣∣∣
Ft

=
e〈λ,Xt〉

EP [e〈λ,Xt〉]
= e〈λ,Xt〉−ϕt(λ),

where Ft is the natural filtration of {Xt, t ≥ 0}. Note that λ = 0 corresponds to

the initial probability measure P. Suppose that EPλ [F (X)] < ∞, then applying

the Esscher measure change to EP [F (X)],

V : = EP [F (X)] = EPλ

[
dP

dPλ

∣∣∣∣
FT
F (X)

]

= EPλ

(dPλ
dP

∣∣∣∣
FT

)−1

F (X)


= EPλ

[
e−〈λ,XT 〉+ϕT (λ)F (X)

]
.

The variance of F (X) under Pλ is given by

Var (F (X), λ) : = EPλ

( dP

dPλ

∣∣∣∣
FT

)2

F (X)2

− V 2

= EP

(dPλ
dP

∣∣∣∣
FT

)−1

F (X)2

− V 2

= EP
[
e−〈λ,XT 〉+ϕT (λ)F (X)2]− V 2. (1)

We call λ∗ that minimizes the variance Var (F (X), λ), the optimal parameter, i.e.,

λ∗ ∈ arg min
λ∈C

Var (F (X), λ) . (2)

Remark 1. Finding the optimal probability measure requires solving the corre-

sponding stochastic optimization problem. In this paper, we restrict the candidate
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probability measures to a parametric class to simplify the optimization problem.

Thus, “optimal” means the optimal in this restricted class, which is not neces-

sarily optimal over all probability measures. In the next section, we show that

the objective function, which applies the Esscher measure change, has good reg-

ularity conditions, so that the corresponding optimization problem can be solved

efficiently by the SAA approach.

3. Main Results

3.1. The SAA-Newton method

In this section, we first use SAA to change the stochastic optimization problem

to a deterministic optimization problem, then apply the Newton iteration method

(also known as the Newton-Raphson method), a common method for finding roots

of a real-valued differentiable function system in numerical analysis and the opti-

mal solutions in deterministic optimization. Denote

f(λ) := EP [g(X,λ)] ,

where

g(X,λ) := e−〈λ,XT 〉+ϕT (λ)F (X)2.

Generally, the function f(λ) cannot be observed or computed directly, but we can

observe g(X,λ), where g(·, ·) is a deterministic real-valued function, and X is

simulated. We assume that |ϕT (λ)| < ∞ for all λ ∈ C. Then by (1), solving the

optimization problem (2) is equivalent to solving the problem

min
λ∈C

f(λ). (3)
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In SAA, we generate independent and identically distributed (i.i.d.) paths of

X denoted by X1, X2, . . . , Xn, and let

fn(λ) =
1

n

n∑
i=1

g(X i, λ).

Then, we formulate a deterministic optimization problem

min
λ∈C

fn(λ), (4)

which can be solved by a deterministic algorithm such as Newton iteration method.

Let π∗ and Π∗n denote the set for optimal solutions for the original problem

(3) and the SAA problem (4), respectively, and v∗ and v∗n denote the optimal

respective values. Let D(A,B) denote the distance between set A and set B, i.e.,

D(A,B) = sup{d(x,B) : x ∈ A}, where d(x,B) = infy∈B ||x − y||. Based

on the following lemma, we show that D(π∗,Π∗n) → 0 and v∗n → v∗ as n → ∞

under some mild conditions.

Lemma 1 (Theorem 9, Kim et al. [16]). Suppose that there exists a compact

subset C ⊂ Rd such that:

(i) π∗ is non-empty and contained in C,

(ii) {fn(x)} converges uniformly to f(x) on C a.s. as n→∞, and

(iii) for sufficiently large n, Π∗n is non-empty and contained in C a.s.

Then v∗n → v∗ a.s. as n → ∞. Furthermore, if f is continuous on C, then

D(π∗,Π∗n)→ 0 a.s. as n→∞.

Let Ξ1 =
{
λ ∈ C : EP

[
e−2p〈λ,XT 〉

]
<∞ and EP[F (X)4p] <∞ for p > 1

}
,

then we have the following theorem.

Theorem 1. If π∗ and Π∗n are non-empty and contained in Ξ1, λ ∈ Ξ1, then

v∗n → v∗ and D(π∗,Π∗n)→ 0 a.s. as n→∞.
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Proof. Note that λ appears in the exponential function, and it is easy to verify that

g(·, λ) is continuous with respect to (w.r.t.) λ on Ξ1. By Lemma 1, it suffices to

prove {fn(λ)} converges uniformly to f(λ) on Ξ1, a.s. as n → ∞ and f(λ) is

continuous on Ξ1.

By the Cauchy-Schwarz inequality, since ∀λ ∈ Ξ1,

(EP [(g(X,λ))p])
2

=
(
EP
[
e−p〈λ,XT 〉+pϕT (λ)F (X)2p])2

= e2pϕT (λ)
(
EP
[
e−p〈λ,XT 〉F (X)2p])2

≤ e2pϕT (λ)EP
[
e−2p〈λ,XT 〉

]
EP
[
F (X)4p

]
<∞.

Since g(x, λ) > 0 for all x ∈ Rd, supλ∈Ξ1
EP [|g(X,λ)|p] = EP [(g(X,λ))p] <

∞. Then by Lemma 3, Chapter 6, Shiryaev [22], g(X,λ) is uniformly integrable

for all λ ∈ Ξ1.

We first consider the continuity of f(λ), ∀λ1, λ2 ∈ Ξ1. Since g(X,λ) is con-

tinuous w.r.t. λ,

lim
||λ1−λ2||→0

f(λ1)− f(λ2) = lim
||λ1−λ2||→0

E [g(X,λ1)− g(X,λ2)]

= E

[
lim

||λ1−λ2||→0
g(X,λ1)− g(X,λ2)

]
= 0,

where the interchange of limit and integration is due to the uniform integrability

of g(X,λ). Therefore, f(λ) is continuous on Ξ1.

Now, we consider the uniform convergence of {fn(x)}. Since

E[|g(X,λ)|] = E[g(X,λ)] <∞,

by the uniform law of large numbers,

sup
λ∈Ξ1

∣∣∣∣∣ 1n
n∑
i=1

g(X i, λ)− E[g(X,λ)]

∣∣∣∣∣ = sup
λ∈Ξ1

|fn(λ)− f(λ)| → 0, a.s. as n→∞.

Then, {fn(x)} is converges uniformly to f(λ), and the theorem is proved.
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Remark 2. Theorem 1 connects the optimal values/solutions of the SAA problems

with those of the original problem, also establishing that the optimal solutions for

SAA are consistent estimators of the optimal solutions for the original problem.

If f(λ) is convex, the optimal solution is unique. To find the optimal solution,

we use ∇f(λ) and Hess[f(λ)], which are estimated using the infinitesimal per-

turbation analysis (IPA) estimators ∇λg(X,λ) and Hessλ[g(X,λ)], respectively.

The parameter λ only appears in the function e−〈λ,XT 〉+ϕT (λ), so the payoff func-

tion F (X) does not affect the continuity of g(X,λ) w.r.t. λ. Define

Ξ2 =
{
λ ∈ C : EP

[
e−p〈λ,XT 〉F (X)2p

]
<∞ and

EP
[
e−p〈λ,XT 〉F (X)2p‖XT‖2p

]
<∞ for p > 1

}
.

The following lemma provides conditions guaranteeing the unbiasedness of the

estimators and the convexity of f(λ). For matrices, ‖ · ‖ will denote the Frobenius

norm.

Lemma 2. For ∀λ ∈ Ξ2, if ‖∇ϕT (λ)‖ < ∞ and ‖Hess[ϕT (λ)]‖ < ∞, then

∇f(λ) = E[∇λg(X,λ)] and Hess[f(λ)] = E [Hessλ[g(X,λ)]]. Moreover,

Hess[f(λ)] > 0, i.e., f(λ) is strictly convex.

Proof. The gradient and Hessian matrix of g(X,λ) are given respectively by

∇λg(X,λ) = (∇ϕT (λ)−XT ) e−〈λ,XT 〉+ϕT (λ)F (X)2,

Hessλ[g(X,λ)] = Hess[ϕT (λ)]

+ (∇ϕT (λ)−XT ) (∇ϕT (λ)−XT )′ e−〈λ,XT 〉+ϕT (λ)F (X)2.

Using the Cauchy-Schwarz inequality, since λ ∈ Ξ2,

EP

[(
e−〈λ,XT 〉F (X)2‖XT‖

)p]
≤
(
EP
[
e−p〈λ,XT 〉F (X)2p

]
EP
[
e−p〈λ,XT 〉F (X)2p‖XT‖2p

]) 1
2 <∞.

9



Since ‖∇ϕT (λ)‖ <∞, also |ϕ(λ)| <∞, then,

sup
λ∈Ξ2

EP

[(
(‖∇ϕT (λ)−XT‖) e−〈λ,XT 〉+ϕT (λ)F (X)2)p] <∞.

Therefore ∇λg(X,λ) is uniformly integrable for each component, so ∇f(λ) =

E[∇λg(X,λ)], i.e., the IPA estimator is unbiased. Similarly, we can prove that

sup
λ∈Ξ2

E
[ (∥∥Hess[ϕT (λ)]

+ (∇ϕT (λ)−XT ) (∇ϕT (λ)−XT )′
∥∥ e−〈λ,XT 〉+ϕT (λ)F (X)2

)p]
<∞.

so Hess[f(λ)] = E [Hessλ[g(X,λ)]].

In addition, for any y ∈ Rd(y 6= 0),

yHess[f(λ)]y′ = yEP [Hessλ [g(X,λ)]] y′ = EP [yHessλ [g(X,λ)] y′]

= EP [(yHess [ϕT (λ)] y′

+〈y,∇ϕT (λ)−XT 〉2
)
e−〈λ,XT 〉+ϕT (λ)F (X)2] > 0.

Thus, Hess [f(λ)] is strictly positive definite.

Remark 3. (i) ∇λg(X,λ) and Hessλ[g(X,λ)] are unbiased IPA estimators for

∇f(λ) and Hess[f(λ)]. If ∇λg(X,λ) and Hessλ[g(X,λ)] have simple expres-

sions, and EP[∇λg(X,λ)] and EP[Hessλ[g(X,λ)]] are easy to compute analyti-

cally, then we can use a deterministic gradient-based method, e.g., Newton itera-

tion, to solve the problem directly, and do not need the SAA framework. (ii) Since

f(λ) is strictly positive definite, if there exists a local optimal solution, it is the

global optimal solution, i.e., if there exists an optimal solution, it is the unique

optimal solution.
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Let λ∗ denote the unique optimal solution of the original optimization problem

(3), and λ∗n denote the optimal solution of the SAA problem (4). Furthermore,

define

Ξ3 =
{
λ ∈ C : EP

[
e−2〈λ,XT 〉F (X)4

]
<∞ and

EP
[
e−2〈λ,XT 〉F (X)4‖XT‖2

]
<∞

}
.

Note that if λ ∈ Ξ3, by the Cauchy-Schwarz inequality,(
EP
[
e−〈λ,XT 〉F (X)2

])
≤ EP

[
e−2〈λ,XT 〉F (X)4

]
<∞.

In addition, if XT has finite variance,(
EP
[
e−〈λ,XT 〉F (X)2‖XT‖2

])2

≤ EP
[
e−2〈λ,XT 〉F (X)4‖XT‖2

]
EP
[
‖XT‖2

]
<∞,

which implies λ ∈ Ξ2. Let Xn = Op(Yn) denote that {Xn/Yn} is bounded in

probability, i.e., for any ε > 0, there exists M > 0 such that Pr{|Xn/Yn| >

M} < ε for all n. The following theorem presents the convergence rate of the

optimal solution.

Theorem 2. Suppose that ‖∇ϕ(λ)‖ <∞, ‖Hess[ϕ(λ)]‖ <∞, and the following

conditions hold:

(i) λ∗ ∈ Ξ1 ∩ Ξ2 ∩ Ξ3.

(ii) EP [‖Hessλ [g(X,λ)]‖] <∞.

Then ‖v∗n − v∗‖ = Op(n
−1/2) and ‖λ∗n − λ∗‖ = Op(n

−1/2).

Proof. Since EP[‖∇λg(X,λ)]‖ < ∞ and EP [‖Hessλ [g(X,λ)]‖] < ∞, then

g(X,λ) and∇λg(X,λ) are Lipschitz continuous on Ξ1 ∩ Ξ2 ∩ Ξ3, and g(X,λ) is

continuously differentiable w.r.t. λ on Ξ1 ∩ Ξ2 ∩ Ξ3.
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Consider the convergence of the optimal values. Since λ ∈ Ξ3,

EP
[
e−2〈λ,XT 〉F (X)4

]
<∞,

and |ϕT (λ)| < ∞, so E[(g(X,λ))2] < ∞. Then by Theorem 11 in Kim et al.

[16], ‖v∗n − v∗‖ = Op(n
−1/2).

Now, consider the convergence of optimal solutions. Since λ ∈ Ξ3 and

|ϕT (λ)| <∞, we also have

EP
[
‖XT‖2e−2〈λ,XT 〉+2ϕT (λ)F (X)4] <∞,

then by the Cauchy-Schwarz inequality(
EP
[
‖XT‖e−2〈λ,XT 〉+2ϕT (λ)F (X)4])2

≤ EP
[
‖XT‖2e−2〈λ,XT 〉+2ϕT (λ)F (X)4]

EP
[
e−2〈λ,XT 〉F (X)4

]
<∞.

By the condition ‖∇ϕT (λ)‖ <∞, therefore,

EP
[
‖∇λg(X,λ)‖2

]
= EP

[∥∥(∇ϕT (λ)−XT ) e−〈λ,XT 〉+ϕT (λ)F (X)2
∥∥2
]

= EP
[
‖∇ϕT (λ)−XT‖2 e−2〈λ,XT 〉+2ϕT (λ)F (X)4] <∞.

By condition (ii),EP [‖Hessλ [g(X,λ)]‖] <∞, and by Lemma 2,Hess[f(λ)]

is strictly positive definite. Then by Theorem 12 in Kim et al. [16], ‖λ∗n − λ∗‖ =

Op(n
−1/2).

Let B(x, r) = {y : ||y − x|| ≤ r} denote the closed ball of radius r around

x. We will prove that the SAA problem can be solved by the following Newton

iteration procedure:

λn,k+1 = λn,k + ∆λn,k,

with Hess[fn(λn,k)]∆λn,k = −∇fn(λn,k). (5)
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Theorem 3. Suppose ‖∇ϕ(λ)‖ <∞, ‖Hess[ϕ(λ)]‖ <∞, and Hess−1[fn(λ∗n)]

exists a.s. for λ∗n ∈ Ξ1 ∩ Ξ2 ∩ Ξ3. If there exist positive constants K, L and R,

such that ‖Hess[fn(λ)]‖ ≤ K a.s., and for ∀λ1, λ2 ∈ B(λ∗n, R),

‖Hess[fn(λ1)]−Hess[fn(λ2)]‖ ≤ L‖λ1 − λ2‖ a.s. (6)

Then there exists r > 0 such that for any λn,0 ∈ B(λ∗n, r), the sequence {λn,k}

derived from the iteration procedure (5) converges to λ∗n a.s. as k →∞.

Proof. We first prove that Ξ1 ∩ Ξ2 ∩ Ξ3 is a convex set. Consider Ξ1. For any

λ1, λ2 ∈ Ξ1 and p+ q = 1, p, q > 0, by the Hölder inequality,

EP
[
e−2〈pλ1+qλ2,Xt〉

]
≤ EP

[
e−2〈λ1,Xt〉

]p
EP
[
e−2〈λ2,Xt〉

]q
<∞.

Therefore Ξ1 is convex. Similarly, Ξ2 and Ξ3 are both convex, and Ξ1 ∩ Ξ2 ∩ Ξ3

is convex.

Then, we consider the convergence of Newton iteration via induction. For any

λn,0 ∈ B(λ∗, r), by Equation (6), letting r = min(R, 1/(2CL)), we have

‖Hess−1[fn(λ∗n)] (Hess[fn(λn,0)]−Hess[fn(λ∗n)]) ‖

≤ ‖Hess−1[fn(λ∗n)]‖‖ (Hess[fn(λn,0)]−Hess[fn(λ∗n)]) ‖

≤ CLr ≤ 1

2
a.s. (7)

Then,

‖Hess−1[fn(λn,0)]‖

≤ ‖Hess−1[fn(λ∗n)]‖
1− ‖Hess−1[fn(λ∗n)] (Hess[fn(λn,0)]−Hess[fn(λ∗n)]) ‖

≤ 2C a.s., (8)

and Hess−1[fn(λn,0)] exists a.s.
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Suppose that λn,k ∈ B(λ∗n, r). Similar to Equations (7) and (8), we know that

Hess−1[fn(λn,k)] exists a.s. and ‖Hess−1[fn(λn,k)]‖ ≤ 2C a.s. Now we prove

λn,k+1 ∈ B(λ∗n, r). By (5),

λn,k+1 − λ∗n = λn,k − λ∗n −Hess−1[fn(λn,k)] (∇fn(λn,k)−∇fn(λ∗n)) a.s.,

so

‖λn,k+1 − λ∗n‖

≤ ‖Hess−1[fn(λn,k)]‖‖∇fn(λn,k)−∇fn(λ∗n)−Hess[fn(λn,k)] (λn,k − λ∗n) ‖

≤ 2C
L

2
‖λ∗n − λn,k‖2 a.s.

Since λn,k ∈ B(λ∗n, r), ‖λ∗n − λn,k‖ ≤ r ≤ 1/(2CL) a.s., then

‖λn,k+1 − λ∗n‖ ≤
1

2
‖λn,k − λ∗n‖ a.s.

Therefore λn,k+1 ∈ B(λ∗n, r), and {λn,k} converges to λ∗n a.s. as k →∞.

Remark 4. (i) By Theorem 1, we know that when n → ∞, λ∗n → λ∗; therefore,

the sequence {λn,k} converges to λ∗ a.s. as n → ∞ and k → ∞. In practice,

since Newton iteration converges quickly, we allocate a much larger share of the

computation budget to the approximation samples of SAA than to the iterations,

i.e., n � k. (ii) Suppose that Var(F (X)) < ∞, and note that when λ = 0, the

probability measure is not changed, so 0 ∈ C. By the convexity of f(λ), we know

that there must exist λ? ∈ Ξ1 ∩ Ξ2 such that EP[f(λ?)] ≤ EP[f(0)]. In other

words, even if the optimal solution is not contained in the set, we can still find

other points λ? that reduce the variance under the new probability measure.
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3.2. Algorithm for the SAA-Newton method and importance sampling

For the SAA-Newton method,∇fn(λ) and Hess [fn(λ)] can be obtained by

∇fn(λ) =
1

n

n∑
j=1

[(
∇ϕT (λ)−Xj

T

)
e−〈λ,X

j
T 〉+ϕT (λ)F

(
Xj
)2
]
,

Hess [fn(λ)] =
1

n

n∑
j=1

[(
Hess [ϕT (λ)]

+
(
∇ϕT (λ)−Xj

T

) (
∇ϕT (λ)−Xj

T

)′)
e−〈λ,X

j
t 〉+ϕT (λ)F

(
Xj
)2

]
.

Then Algorithm 1 finds the optimal parameter in the Esscher measure change.

After obtaining the estimated λ∗n, we can change the probability measure using the

Algorithm 1 SAA-Newton method to find the optimal parameter
Input: number of samples n in SAA; maturity T ; Lévy processes parameter Λ

under the original probability measure; termination tolerance of Newton iter-

ation ρ.

Initialization: initial point λ0; k = 0.

1: generate and store Lévy process paths {X1
t , 0 ≤ t ≤ T}, {X2

t , 0 ≤ t ≤

T}, . . . {Xn
t , 0 ≤ t ≤ T} under the original probability measure;

2: compute payoffs {F (X i), i = 1, 2, . . . , n};

3: repeat

4: compute∇fn(λk) and Hess[fn(λk)];

5: solve Hess[f(λk)]∆λk = −∇f(λk);

6: set λk+1 = λk + ∆λk;

7: set k = k + 1;

8: until (‖λk+1 − λk‖ ≤ ρ)

Output: estimated optimal parameter λ∗n = λk+1.
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following relationship between the characteristic functions of the original proba-

bility measure P and the new probability measure Pλ (Section 6.2.2, Schoutens

[2]):

Φλ
XT

(u) =
ΦXT (u− iλ)

ΦXT (−iλ)
, (9)

where Φλ
XT

is the characteristic function under the new probability measure Pλ.

In Brownian motion, a drift change is the most frequently used method for

changing the probability measure; see Glasserman [4], Glasserman et al. [21] and

Su and Fu [12]. In our framework, if the original process parameters are (µ, σ)

in Brownian motion, after the Esscher measure change, we can obtain the char-

acteristic function of the new process, then obtain the new process parameters

(µ+ λ∗, σ), which indicates the drift change is a special case of the Esscher mea-

sure change in Brownian motion. Similarly, for other processes, we can obtain

the new process parameters by the same procedure, i.e., by Equation (9), the char-

acteristic function of XT under the new probability measure is obtained, then we

can compute the process parameters under the new probability measure. For ex-

ample, if the process parameters of the VG process are (σ, ν, θ) under the original

probability measure, and the characteristic function is given by

ΦXV G
T

(u) =

(
1− iuθν +

1

2
σ2νu2

)−T/ν
,

then by Equation (9), the new characteristic function is given by

Φλ
XV G
T

(u) =

(
1− iuν(θ + λσ2)

1− λθν − 1/2σ2νλ2
+

1

2

σ2

1− λθν − 1/2σ2νλ2
νu2

)−T/ν
,

and the new process parameters for the Esscher measure change are(
σ/
√

1− λθν − 1/2σ2νλ2, ν, (θ + λσ2)/(1− λθν − 1/2σ2νλ2)
)
.
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Finally, we give the algorithm for importance sampling using the Esscher mea-

sure change.

Algorithm 2 Importance sampling by Esscher measure change
Input: number of simulation samples N in pricing; maturity T ; Lévy processes

parameter Λ under the new probability measure with the optimal parameter

λ∗n.

1: generate and store Lévy process paths {X1
t , 0 ≤ t ≤ T}, {X2

t , 0 ≤ t ≤ T},

. . .,
{
XN
t , 0 ≤ t ≤ T

}
under the new probability measure;

2: compute
{
V i = F (X i) e−〈λ∗n,Xi

T 〉+ϕT (λ∗n), i = 1, 2, . . . , N
}

.

Output: estimated payoff V̂ = 1/N
∑N

i=1 V
i.

3.3. Verifying the conditions

Verifying the conditions in the theorems requires finding the sets Ξ1,Ξ2,Ξ3,

which are difficult to specify directly. However, we demonstrate how to easily

obtain a subset C̃ ⊆ Ξ1∩Ξ2∩Ξ3, and by Remark 4ii, even if the optimal solution

is not in C̃, Algorithm 1 will still find a λ? to reduce the variance, when the search

for the optimal parameters is restricted to C̃. For the NIG example, the density

function is given by

f(x;α, β, δ) =
αδ

π
exp

(
δ
√
α2 − β2 + βx

) K1

(
α
√
δ2 + x2

)
√
δ2 + x2

,

whereKn(·) is a modified Bessel function of the third kind with index n. Consider

EP [exp (−2〈λ,X ′〉)F (X ′)4‖X ′‖2]. First, it is easy to verify that E[X ′i
4] < ∞,

whereX ′i is the ith component for the random vectorX ′. By the Cauchy-Schwartz

inequality, it suffices to find the set C̃ to ensure EP [exp (−4〈λ,X ′〉)F (X ′)8] <
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∞ for all λ ∈ C̃, by Equation (3), which is equivalent to verifying∫
R

e−4λixie8xif(x;α, β, δ)dx =

∫
R

f(x;α, β + 8− 4λi, δ)dx <∞.

So C̃ = (−(α + β)/4 + 2, (α − β)/4 + 2)M , where the superscript denotes the

dimension. It is easy to verify that C̃ ⊆ Ξ1 ∩ Ξ2 ∩ Ξ3.

For the VG example, since F (X) ≤ 1, we can calculate C̃ = (−θ/σ2 −√
2σ2 + θ2ν/(σ4ν),−θ/σ2 +

√
2σ2 + θ2ν/(σ4ν))M . For numerical examples,

refer to Jiang et al. [23].

4. Conclusion

In this paper, we propose a new method, the SAA-Newton method, to find the

optimal importance sampling parameters based on the Esscher measure change

for Lévy processes. The optimization problem of minimizing the variance un-

der the new probability measure is formulated in the SAA framework, for which

there exists a unique optimal solution (parameter) under some mild conditions.

Furthermore, the corresponding deterministic problem can be solved by Newton

iteration. Theoretical proofs, such as the relationship between the SAA solutions

and the true optimum and the convergence rate to the optimum, are provided.

References

[1] R. Cont, Empirical properties of asset returns: stylized facts and statistical

issues, Quant. Finance. 1 (2001) 223–236.
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Birkhäuser, Boston, 21–34, 2007.

[6] P. Glasserman, Z. J. Liu, Sensitivity estimates from characteristic functions,

Oper. Res. 58 (2010) 1611–1623.

[7] R. Kawai, Likelihood ratio gradient estimation for Meixner distribution and
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