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1. Introduction

Quantiles provide an alternative performance measure to expected values. In the financial services

industry, for example, Value at Risk (VaR) is one of the most widely used standard risk measures

(cf. Glasserman et al. 2000). In practice, simulation is often used to estimate quantiles, for which

Serfling (1980) provides an overview of quantile estimation for independent and identically dis-

tributed data. Hong (2009) was the first to address the important problem of quantile sensitivity

estimation in the simulation setting, introducing a general framework based on probability sensi-

tivities. He showed that quantile sensitivities can be written as a conditional expectation, leading

to an IPA estimator for which he proved asymptotic unbiasedness. He then introduced a batched

IPA estimator, for which weak consistency and a central limit theorem were established. In related

work, Hong and Liu (2009) studied the sensitivities of conditional value at risk, and Liu and Hong

(2009) proposed a kernel estimator which has a better asymptotic convergence rate than the IPA

estimator. It is well known that IPA cannot handle discontinuous performance measures, so Fu,
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Hong and Hu (2010) applied conditional Monte Carlo to derive a more general estimator that also

had an improved convergence rate. Heidergott and Volk-Makarewicz (2012) used measure-valued

differentiation method in estimating quantile sensitivities, and applied it to the Variance-Gamma

process.

Simplicity of implementation and efficient computational properties make the IPA estimator

attractive for quantile sensitivity estimation in practice. The purpose of this note is to provide

an alternative more direct way of deriving many of the IPA results in Hong (2009). By simply

differentiating the definition of the quantile and comparing it with a well-known IPA expression,

the unbatched IPA estimator directly follows, without the need for probabilities sensitivities. As a

result the proof for unbiasedness is also simplified. For the batched version of the IPA estimator,

strong consistency and a central limit theorem are also established with streamlined proofs.

2. IPA Estimator of Quantile Sensitivities

Let h(X(θ);θ) be a performance function, where X(θ) = (X1(θ), . . . ,Xn(θ)) is a vector of random

variables defined on a given probability space (Ω,F ,P), θ ∈Θ⊂R is a parameter that could be in

the random variables or directly in the performance function or both, and Θ is an open interval.

Let qα(θ) denote the α-quantile of h(X(θ);θ) for any 0 < α < 1, where α is the corresponding

probability, i.e., Pr{h(X(θ);θ)≤ qα(θ)}= α. The goal is to estimate q′α(θ) = dqα(θ)/dθ from samples

of h(X(θ);θ).

Let F (·;θ) denote the distribution function of h(X(θ);θ), where F (x;θ) = Pr{h(X(θ);θ)6 x}.
By definition of the quantile

α= F (qα(θ);θ). (1)

Let ∂i denote the partial differentiation with respect to (w.r.t.) the ith argument of F . To construct

the IPA estimator, we make the following assumption:

A1. In a neighborhood of x= qα(θ), F (x;θ) is continuously differentiable w.r.t. both arguments,

and the density ∂1F (·;θ) is strictly positive for each θ ∈Θ.

In practice, the distribution function of h(X(θ);θ) is usually unavailable, so A1 cannot be verified

directly. However, the distribution of X is generally known, so the relationship between X and

h(X(θ);θ) can be used to establish A1, as in the following proposition, whose proof is provided in

Appendix A.

Proposition 1. Let y = h(x1, . . . , xn;θ) and h−1i denote the inverse function of h w.r.t. the ith

argument. Assume X(θ) is a continuous random vector with joint density g(x1, . . . , xn;θ). If in a

neighborhood of qα(θ), ∃i∈ {1, . . . , n}, s.t. ∀xj, j = 1, . . . n, the following conditions are satisfied:

(i) h−1i (x1, . . . , xi−1, y, xi+1, . . . , xn;θ) and |∂yh−1i (x1, . . . , xi−1, y, xi+1, . . . , xn;θ)| exist and are con-

tinuously differentiable w.r.t. θ, and |∂yh−1i (x1, . . . , xi−1, y, xi+1, . . . , xn;θ)| 6= 0.
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(ii) g(x1, . . . , xn;θ) is continuously differentiable w.r.t. xi and θ, and g(x1, . . . , xn;θ) > 0 for all

θ ∈Θ.

Then F (x;θ) satisfies A1.

Example 1. Let h(X(θ);θ) = θeX and θ > 0, where X(θ) follows the standard normal distribution

with density function given by g(x;θ) = 1/
√

2π exp(−x2/2), which is continuous and differentiable

w.r.t. x and θ, and positive everywhere. Since h−1(y;θ) = lny − lnθ, |∂yh−1(y;θ)| = |1/y| 6= 0,

∂y∂θh
−1(y;θ) = 0 exists, and the conditions of Proposition 1 are satisfied. Since the density function

of h(X;θ) is given by

f(x;θ) =
1

x

1√
2π
e−

(lny−ln θ)2

2 , x > 0,

it is easy to verify directly that its distribution function satisfies A1.

Under the assumption A1, chain rule differentiation of Equation (1) w.r.t. θ leads to

q′α(θ) = −∂2F (x;θ)

∂1F (x;θ)

∣∣∣∣
x=qα(θ)

. (2)

Equation (2) was used to derive quantile sensitivity estimators based on conditional Monte Carlo

(smoothed perturbation analysis, cf. Fu and Hu 1997) in Fu, Hong and Hu (2010), and using

measure-valued differentiation in Heidergott and Volk-Makarewicz (2012). These applications

involved estimating the numerator and denominator of (2) separately.

Instead, we simply note that (2) has the same form as the well-known IPA expression for a single

continuous random variable (cf. Suri and Zazanis 1988, Glasserman 1991, Fu 2006), and state the

following lemma.

Lemma 1 (Suri and Zazanis 1988, Glasserman 1991). Let G(·, θ) be a cumulative distribu-

tion function with density function ∂1G(·, θ), parameterized by θ on an open interval θ ∈Θ. Suppose

that (i) for each θ ∈ Θ, ∂1G(·, θ) is strictly positive on an open interval Iθ and zero elsewhere;

and (ii) G is continuously differentiable w.r.t. both arguments on {(x, θ) : x ∈ Iθ, θ ∈ Θ}. For

Y (u, θ) =G−1(u, θ) defined by the inverse transform representation,

∂Y (u, θ)

∂θ
=−∂2G(Y (u, θ), θ)

∂1G(Y (u, θ), θ)
, 0<u< 1, θ ∈Θ. (3)

Specifically, for the α-quantile of h(X(θ);θ), often abbreviated henceforth as simply h, Equation

(2) can be connected to Equation (3) by taking u = α and replacing Y (u;θ) by h and G by F .

Therefore, a natural idea to estimate the quantile sensitivity is to first estimate the α-quantile of

h for the right-hand side of (3), and then use the corresponding sample derivative (IPA estimator)

of h as the estimate of the quantile derivative, representing the left-hand side of (3). This similar
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idea was used in Heidergott and Volk-Makarewicz (2012) for measure-valued differentiation and

can also be used to derive a likelihood ratio method quantile sensitivity estimator.

Remark 2 of Hong (2009) relates Equation (3) to his result on probability sensitivities and

a conditional expectation, where the condition is h = α. The closed-form probability sensitivity

results derived in Hong (2009) are not needed here. As a result, the theoretical proofs that follow

are much simplified.

To present the IPA estimator for the quantile sensitivity, the lth-order statistic from a set of i.i.d

random variables will be denoted using the subscript (l), i.e., for a sample of size n,

h(1) ≤ h(2) ≤ · · · ≤ h(dαne) ≤ · · · ≤ h(n), (4)

and let q̂nα(θ), h(dαne) be the standard α-quantile estimator for h. Then (cf. Serfling 1980)

lim
n→∞

q̂nα(θ) = qα(θ) w.p.1. (5)

By A1, we know the conditions in Lemma 1 are satisfied. Then substituting in the α-quantile

estimator for h into (3),
∂h

∂θ

∣∣∣∣
h=q̂nα

= −∂2F (h;θ)

∂1F (h;θ)

∣∣∣∣
h=q̂nα

. (6)

To distinguish from the usual IPA estimator, we use ∂h/∂θ to denote the estimator given by (6),

which is generally unavailable since it requires knowing F (x;θ). On the other hand, we use dh/dθ to

denote the usual IPA, i.e., sample derivative estimator. These two are related through conditional

expectation as follows, which is the main new result.

Theorem 1. Assume that h(X(θ);θ) is differentiable w.r.t. θ ∈Θ w.p.1, and A1 is satisfied at the

point y. Then,

E

[
dh(X(θ);θ)

dθ

∣∣∣∣h(X(θ);θ) = y

]
=−∂2F (y;θ)

∂1F (y;θ)
. (7)

Proof: Let Y ∼ F . Then Y can be generated by Y (ω;θ) = F−1(U(ω);θ), where U(ω) is a uniform

random variable on [0,1]. Note that Y (ω, θ)
d
= h(X(θ);θ). Given U(ω) = u, by Lemma 1,

∂Y (ω;θ)

∂θ
=−∂2F (Y (ω;θ);θ)

∂1F (Y (ω;θ);θ)
. (8)

By the definition of Y (ω;θ) and taking the conditional expectation on both sides of Equation (8),

E

[
dh(X(θ);θ)

dθ

∣∣∣∣U(ω) = u

]
=E

[
dY (ω;θ)

dθ

∣∣∣∣U(ω) = u

]
=E

[
∂Y (ω;θ)

∂θ

∣∣∣∣U(ω) = u

]
=E

[
−∂2F (Y (ω;θ);θ)

∂1F (Y (ω;θ);θ)

∣∣∣∣U(ω) = u

]
=E

[
−∂2F (F−1(U(ω);θ);θ)

∂1F (F−1(U(ω);θ);θ)

∣∣∣∣U(ω) = u

]
=−∂2F (F−1(u;θ);θ)

∂1F (F−1(u;θ);θ)
.

(9)
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Choose u such that y= F−1(u;θ) , then

E

[
dh(X(θ);θ)

dθ

∣∣∣∣U(ω) = u

]
=−∂2F (y;θ)

∂1F (y;θ)
. (10)

The event {U(ω) = u} is equivalent to the event{Y (ω;θ) = y}, i.e. {h(X(θ);θ) = y}, giving (7).

�

Example 2. A simple well-known example is the following: h(X(θ);θ) = Xθ where X is expo-

nentially distributed with mean 1, i.e., X ∼ Exp(1). dh/dθ = X = h/θ, so E[dh/dθ|h = y] =

y/θ. On the other hand, h(X;θ) has the distribution function F (y;θ) = 1 − exp(−y/θ), so

−∂2F (y;θ)/∂1F (y;θ) =−∂θ(1− exp(−y/θ))/∂y(1− exp(−y/θ)) = y/θ.

Remark 1. Hong (2009) used g(t;θ) =E[∂θh(X;θ)|h(X;θ) = t] to derive a closed-form expression

for the quantile sensitivity. Theorem 1 provides an analytical expression for g(t;θ), i.e., g(t;θ) =

−∂2F (t;θ)/∂1F (t;θ), which is very useful for verifying further assumptions on g(t;θ).

Example 3. We emphasize the difference between ∂h/∂θ and dh/dθ using the following example.

Set h = θX1 +X2, where X1 and X2 are independent standard normal random variables. Then,

h ∼ N(0, θ2 + 1), and ∂h/∂θ = −∂2F (h;θ)/∂1F (h;θ) = θh/(θ2 + 1). By taking partial derivatives

directly, we obtain dh/dθ =X1 6= ∂h/∂θ. However, it is easy to compute the correlation ρ(X1, h)

and joint distribution, and thus show E[dh/dθ|h] =E[X1|h] = θh/(θ2 + 1) = ∂h/∂θ.

For notational convenience, let

ψ(y)≡E
[
dh(X(θ);θ)

dθ

∣∣∣∣h(X(θ);θ) = y

]
=−∂2F (y;θ)

∂1F (y;θ)
, (11)

and q̂′
n

α denote the estimator of quantile sensitivity q′α. By Equation (7), substituting y= q̂nα,

q̂′
n

α =ψ(q̂nα) =−∂2F (q̂nα;θ)

∂1F (q̂nα;θ)
. (12)

If dh/dθ satisfies the following assumption, the quantile sensitivity estimator can be easily derived

via the quantile estimator.

A2. There exists a function φ :R→R s.t. for any X = (X1, . . . ,Xn), dh(X)/dθ= φ(h(X)).

Example 2 satisfies this condition, whereas Example 3 does not since it also contains another

random variable X2 rather than h only. We have

ψ(y) =E

[
dh

dθ

∣∣∣∣h= y

]
=E[φ(h)|h= y] = φ(y). (13)

Then,

q̂′
n

α =ψ(q̂nα) = φ(q̂nα), (14)
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which means ∂h/∂θ = dh/dθ. In the next section, we can prove φ(q̂nα) is a strongly consistent

estimator of the quantile sensitivity. However, in general A2 does not hold, so dh/dθ cannot be

written as a function of h only, and an alternative approach is required.

For the sequence (4), we define the corresponding derivatives sequence

dh(1)

dθ
,
dh(2)

dθ
, . . . ,

dh(dαne)

dθ
, . . . ,

dh(n)

dθ
. (15)

Although dh(dαne)/dθ 6=E [dh/dθ|h= q̂nα] in general (cf. Example 3), they have the same expecta-

tion:

E

[
dh(dαne)

dθ

]
=E

[
E

[
dh(dαne)

dθ

∣∣∣∣h(dαne)

]]
=

∫ ∞
−∞
E

[
dh(dαne)

dθ

∣∣∣∣h(dαne) = y

]
dFh(dαne)(y)

=

∫ ∞
−∞
E

[
dh

dθ

∣∣∣∣h= y

]
dFh(dαne)(y)

=

∫ ∞
−∞
E

[
dh

dθ

∣∣∣∣h= y

]
dFq̂nα(y) =E[ψ(q̂nα)],

(16)

where Fh(dαne)(y) and Fq̂nα(y) are the distributions of h(dαne) and q̂nα respectively. The third equality

holds since h(dαne) is one of the samples generated in (4). The fourth equality holds since we define

h(dαne) = q̂nα. Thus the IPA estimator for the quantile is simply given by

In ,
dh(dαne)

dθ
. (17)

In other words, the quantile sensitivity estimator is simply the IPA estimator for h corresponding

to the α-quantile estimate. The key insight is to note that the expected value of (12) will converge

to q′α under appropriate conditions simply by applying the relationship (2). By (16), to obtain

the expected value of the IPA estimator, we use k independent batches each of size n to form the

batched IPA estimator

q̂′
n,k

α =
1

k

k∑
i=1

In,i, (18)

where (In,i, i= 1,2, . . . , k) are independent realizations of the IPA estimator In.

3. Asymptotic Unbiasedness, Consistency and Central Limit Theorem

This section has two parts. In first part, we first consider the unbatched IPA under assumption

A2, because of its easy implementation and lower computational cost compared with the batched

estimator. We prove that the unbatched estimator (13) is strongly consistent, and provide the

convergence rate, which is illustrated by a numerical example given in Appendix B. In the second

part, we consider the statistical properties when dh/dθ cannot be written as a function of h only,

i.e., A2 is not satisfied. We prove asymptotic unbiasedness of the unbatched IPA estimator given

by (17), and strong consistency and a central limit theorem for the batched IPA estimator given

by (18).
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3.1. Unbatched Estimator

The IPA estimator of (13) is a strongly consistent estimator with convergence rate O(n−
1
2 ). The

precise statement is given in the following proposition.

Proposition 2. If A1 and A2 are satisfied, then φ(q̂nα)→ q′α w.p.1 as n→∞. Moreover, if φ(x)

is twice differentiable and bounded by a constant M , then φ(q̂nα)− q′α =O(n−
1
2 ) in distribution as

n→∞.

Proof: By Equation (5) and the continuity of ∂2F (x;θ) and ∂1F (x;θ) in A1, we have

∂1F (q̂nα;θ)→ ∂1F (qα;θ) w.p.1 as n→∞,

and

∂2F (q̂nα;θ)→ ∂2F (qα;θ) w.p.1 as n→∞.

Since ∂1F (q̂nα;θ) is strictly positive by A1, and by (2) and (13),

φ(q̂nα) =−∂2F (q̂nα;θ)

∂1F (q̂nα;θ)
→−∂2F (qα;θ)

∂1F (qα;θ)
= q′α w.p.1 as n→∞.

The following properties of q̂nα are well known (cf. Serfling 1980),

n
1
2 (q̂nα− qα)

d→N
(

0,
α(1−α)

(∂1F (qα;θ))2

)
as n→∞, (19)

where ∂1F (qα;θ) is strictly positive by A1, i.e., q̂nα− qα =O(n−
1
2 ). By Taylor’s theorem,

φ(q̂nα)−φ(qα) = φ′(qα)(q̂nα− qα) +φ′′(ξ)(q̂nα− qα)2, (20)

where ξ is between q̂nα and qα. By condition φ′′(x)≤M , φ′′(ξ)≤M . Then φ(q̂nα)−φ(qα) =O(n−
1
2 )

in distribution as n→∞. �

Under A2, the IPA estimator given by (17) is strongly consistent and there is no need to batch

as in Hong (2009), and the quantile sensitivities can be obtained by a single run simulation. We

provide an illustrative numerical example in Appendix B.

Remark 2. For some special cases, φ(q̂nα) converges to a normal random variable with mean q′α.

If φ(x) = ax+ b is a linear function, then φ(q̂nα) = aq̂nα + b, so by Equation (19),

n−
1
2 (φ(q̂nα)− q′α)

d→N
(

0,
α(1−α)a2

(∂1F (qα;θ))2

)
as n→∞.
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3.2. Batched Estimator

Generally, dh/dθ cannot be written as a function of h only, i.e., A2 is not satisfied, and we need

to batch the estimator as in (18) and Hong (2009). In this subsection, we establish strong consis-

tency and a central limit theorem for the batched estimator as in Hong (2009). First, asymptotic

unbiasedness of the unbatched IPA estimator (17) is given in the following lemma.

Lemma 2. Suppose that sup
n
E[I2n]<∞ and h is differentiable w.r.t. θ w.p.1. If A1 is satisfied, then

E[In]→ q′α as n→∞.

Proof: Similarly as in the proof of Proposition 1, by assumption A1, we can get

−∂2F (q̂nα, θ)

∂1F (q̂nα;θ)
→−∂2F (qα, θ)

∂1F (qα;θ)
as n→∞.

It suffices to prove ∂2F (q̂nα;θ)/∂1F (q̂nα;θ) is uniformly integrable.

E

[(
∂2F (q̂nα;θ)

∂1F (q̂nα;θ)

)2
]

=

∫ ∞
−∞

(
E

[
dh

dθ

∣∣∣∣h= y

])2

dFq̂nα(y)≤
∫ ∞
−∞
E

[(
dh

dθ

)2
∣∣∣∣∣h= q̂nα

]
dFq̂nα(y) =E[I2n],

(21)

where the inequality follows from Jensen’s inequality for conditional expectation, and the second

equality holds similarly as Equation (16). Since sup
n
E[I2n]<∞, we know ∂2F (q̂nα;θ)/∂1F (q̂nα;θ) is

uniformly integrable. Then

E

[
−∂2F (q̂nα;θ)

∂1F (q̂nα;θ)

]
→E

[
−∂2F (qα;θ)

∂1F (qα;θ)

]
as n→∞.

By Equation (16) and Theorem 1,

E[In] =E[ψ(q̂nα)] =E

[
−∂2F (q̂nα;θ)

∂1F (q̂nα;θ)

]
→E

[
−∂2F (qα;θ)

∂1F (qα;θ)

]
= q′α as n→∞.

�

From asymptotic unbiasedness of the unbatched estimator, we can get strong consistency of the

batched estimator.

Theorem 2. Under the assumptions in Lemma 2, q̂′
n,k

α → q′α w.p.1 as n→∞ and k→∞.

Proof: Since q̂′
n,k

α = 1/k
k∑
i=1

In,i, where In,i are i.i.d samples of In,

E[q̂′
n,k

α ] =E[In] and V ar[q̂′
n,k

α ] =
1

k
V ar[In]. (22)

and sup
n
E[I2n]<∞, which means E[In] exists, we apply Kolmogorov’s strong law of large numbers

(SLLN),

q̂′
n,k

α =
1

k

k∑
i=1

In,i→E[In], w.p.1 as k→∞. (23)
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By Lemma 2, lim
n→∞

lim
k→∞

q̂′
n,k

α = q′α w.p.1.

Similarly, if let n → ∞ first, we have lim
n→∞

E[In] = q′α. Then we apply SLLN, and obtain

lim
k→∞

lim
n→∞

q̂′
n,k

α = q′α w.p.1.

�

Next, we provide a central limit theorem for the estimator after stating the following assumptions

and lemmas.

A3. |∂2F (x;θ)|<M for some M > 0, ∂2F (x;θ) and ∂1F (x;θ) are both twice differentiable w.r.t.

the first argument, and bounded by M for all derivatives, i.e.,

|∂1 (∂2F (x;θ)) | ≤M, |∂1 (∂1F (x;θ)) | ≤M, |∂2
1 (∂2F (x;θ)) | ≤M, |∂2

1 (∂1F (x;θ)) | ≤M. (24)

Remark 3. Similar to Proposition 1, we can verify A3 using the relationship between X(θ) and

h(X(θ);θ) when an analytical expression for F (x;θ) is not available.

Lemma 3 (Hong 2009). Suppose that the density function ∂1F (x;θ) is continuously differentiable

at x= qα and ∂1F (qα;θ)> 0. Then, both E[q̂nα− qα] and E[(q̂nα− qα)2] are of O(n−1).

Note that by A3 we can easily verify the conditions in Lemma 3. Then we have the following

lemma, with the proof provided in Appendix C.

Lemma 4. Under the assumptions in Lemma 2, if A3 is satisfied, then E[In]− q′α =O(n−1).

Finally, the precise statement of the central limit theorem is as follows.

Theorem 3. Under the assumptions in Lemma 4, if inf
n
V ar(In)> 0, then

q̂′
n,k

α − q′α(
V ar[q̂′

n,k

α ]
) 1

2

d→N (0,1) as n→∞, k→∞ and
k

1
2

n
→ 0. (25)

Proof: The left-hand side can be written as

q̂′
n,k

α − q′α(
V ar[q̂′

n,k

α ]
) 1

2

=
q̂′
n,k

α −E
[
q̂′
n,k

α

]
(
V ar[q̂′

n,k

α ]
) 1

2

+
E
[
q̂′
n,k

α

]
− q′α(

V ar[q̂′
n,k

α ]
) 1

2

. (26)

By definition, q̂′
n,k

α is the sample average of i.i.d replications of In. Therefore, by the Lindeberg-Levy

central limit theorem, the first term on the right-hand side of (26) satisfies

q̂′
n,k

α −E
[
q̂′
n,k

α

]
(
V ar[q̂′

n,k

α ]
) 1

2

d→N (0,1) as k→∞. (27)



Jiang and Fu: On Estimating Quantile Sensitivities via IPA
10 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

From Lemma 3, we know E[In]− q′α = O(n−1), i.e., |E[In]− q′α| can be written as L/n for some

constant L. By (22) and inf
n
V ar(In)> 0, we can obtain∣∣∣∣∣∣∣

E
[
q̂′
n,k

α

]
− q′α(

V ar[q̂′
n,k

α ]
) 1

2

∣∣∣∣∣∣∣≤
L

(V ar[In])
1
2

k
1
2

n
→ 0 as

k
1
2

n
→ 0. (28)

Therefore, the theorem is proved by Slutsky’s theorem (Van der Vaart 2000). �

4. Conclusion

In this note, we first illustrate the relationship between quantile sensitivity estimation and usual

gradient estimation, which leads to a simple derivation of the IPA estimator for quantile sensitivity.

Under special conditions, we show the unbatched estimator is a strongly consistent estimator, and

give the convergence rate. Similarly, we show the batched estimator is also a strongly consistent

estimator and follows a limit central theorem. Although the batched estimator is the same as in

Hong (2009), the parameter of interest in our setting is slightly more general, but more importantly,

our alternative derivation leads to simpler more direct proofs.
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Appendix.

A. Proof of Proposition 1

We abbreviate X(θ) as X. Let Y = (Y1, . . . , Yn) where Yj = Xj, j 6= i and Yi = h(X;θ) =

h(X1, . . . ,Xn;θ). By (i), Xi = h−1i (X1, . . . ,Xi−1, Yi,Xi+1, . . . ,Xn;θ) = h−1i (Y1, . . . , Yn;θ) exists. The

joint density function of Y is given by

fY (y1, . . . , yn;θ) = |J |g(x1, . . . , xi−1, h
−1
i (x1, . . . , xi−1, yi, xi+1, . . . , xn;θ), xi+1, . . . , xn;θ)

= |J |g(y1, . . . , yi−1, h
−1
i (y1, . . . , yi−1, yi, yi+1, . . . , yn;θ), yi+1, . . . , yn;θ), (29)

where the Jacobian is given by

J =

∣∣∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2
· · · ∂x1

∂yn
∂x2
∂y1

∂x2
∂y2
· · · ∂x2

∂yn
...

...
...

∂xn
∂y1

∂xn
∂y2
· · · ∂xn

∂yn

∣∣∣∣∣∣∣∣∣=
∂

∂yi
h−1i (y1, . . . , yi−1, yi, yi+1, . . . , yn;θ). (30)
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Let h−1i (y1, . . . , yi−1, yi, yi+1, . . . , yn;θ) be abbreviated as h−1i . The density function of Yi = h(X;θ)

can be regarded as a marginal distribution and given by

f(yi;θ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fY (y1, . . . , yn;θ)dy1 · · ·dyi−1dyi+1 · · ·dyn

=

∫ ∞
−∞
· · ·
∫ ∞
−∞
|J |g(y1, . . . , yi−1, h

−1
i , yi+1, . . . , yn;θ)dy1 · · ·dyi−1dyi+1 · · ·dyn. (31)

By condition (i), |J | is continuously differentiable w.r.t. θ. By (i) and (ii), g(y1, . . . , yn;θ) is contin-

uously differentiable w.r.t yi and θ and h−1i is continuously differentiable w.r.t θ, it is easy to check

that g(y1, . . . , yi−1, h
−1
i , yi+1, . . . , yn;θ) is also continuously differentiable w.r.t. θ. Then, f(t;θ) is

continuously differentiable w.r.t. θ, and

∂F (x;θ)

∂θ
=

∂

∂θ

∫ x

−∞
f(t;θ)dt=

∫ x

−∞

∂f(t;θ)

∂θ
dt (32)

exists and is continuous w.r.t. θ. Moreover, ∂F (x;θ)/∂x= f(x;θ) exists and is continuous w.r.t. x.

Finally, since g(x1, . . . , xn;θ)> 0 for all θ ∈Θ and J 6= 0, we obtain f(t;θ)> 0, therefore, F (x;θ)

satisfies A1.

B. Numerical example for the unbatched IPA estimator

We consider the α-quantile of the Delta of a European call option. Let h denote the payoff function,

h, h(X;θ) = (S0e
X −K)+, (33)

where S0 is the initial price of an underlying asset, K is strike price of the call option, X ∼

N((r − 1
2
σ2)T,σ

√
T ), where r is the risk-free interest, T is the maturity and σ is the volatility.

Assume that we are interested in the quantile sensitivities of h w.r.t. θ= S0, i.e. the α-quantile of

the Delta. Then, differentiating (33),

dh

dθ
=

{
(h+K)/θ if θeX ≥K,
0 otherwise.

(34)

Let S0 = 100, K = 100, r = 0.02, σ = 0.3, T = 1. Generate {hi, i = 1, . . . , n}, the order statistics

{h(i), i= 1, . . . , n} to obtain the estimator

In =
h(dαne) +K

θ
. (35)

For different values of n and α, Table 1 shows the quantile sensitivity estimates, where each quantile

sensitivity estimate is obtained by one set of sample size n, and the error is estimated by 1000

macroreplications. The true quantile of the payoff function h is given by qα = θezα −K, where zα

is the quantile of the normal distribution N((r− 1
2
σ2)T,σ

√
T ) and the true quantile sensitivities

are given by q′α = ezα .
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Table 1 Quantile sensitivity estimates for European Call option

n α= 0.7 Error α= 0.8 Error α= 0.9 Error

1000 1.1249 0.0113 1.2354 0.0137 1.4636 0.0183
4000 1.1429 0.0056 1.2568 0.007 1.4174 0.0093
16000 1.1377 0.0029 1.2567 0.0033 1.4504 0.0049
64000 1.1441 0.0014 1.2573 0.0017 1.4321 0.0023
256000 1.1419 0.0007 1.2547 0.0009 1.4331 0.0012
1024000 1.1409 0.0004 1.2558 0.0004 1.4317 0.0005
true value q′α 1.1415 1.2554 1.4326

C. Proof of Lemma 4

For ease of notation, denote F = F (x;θ) and ϕ(x) = −∂2F/∂1F . By A3, in a neighborhood of

x= qα, we have ∂1F > 0 and

|∂2F |<M, |∂1∂2F |<M, |∂2
1F |<M, |∂2

1∂2F |<M and |∂3
1F |<M. (36)

For the first derivative of ϕ(x),

|ϕ′(x)|=
∣∣∣∣−∂1∂2F∂1F

+
∂2F∂

2
1F

(∂1F )2

∣∣∣∣≤ |∂1∂2F ||∂1F |
+
|∂2F∂2

1F |
(∂1F )2

≤M1 <∞, (37)

where M1 > 0, and for the second derivative of ϕ(x),

|ϕ′′(x)|=
∣∣∣∣−∂2

1∂2F

∂1F
+

2∂1∂2F∂
2
1F + ∂2F∂

3
1F

(∂1F )2
− 2∂2F (∂2

1F )2

(∂1F )4

∣∣∣∣
≤ |∂

2
1∂2F |
|∂1F |

+
|2∂1∂2F ||∂2

1F |+ |∂2F ||∂3
1F |

(∂1F )2
+

2|∂2F |(∂2
1F )2

(∂1F )4
≤M2 <∞.

where M2 > 0. By Lemma 3,

E[q̂nα− qα] =O(n−1), (38)

E
[
(q̂nα− qα)2

]
=O(n−1). (39)

By Taylor’s theorem,

ϕ(q̂nα)−ϕ(qα) =ϕ′(qα)(q̂nα− qα) +ϕ′′(ξ)(q̂nα− qα)2, (40)

where ξ is between q̂nα and qα. Since limn→∞ q̂
n
α = qα w.p.1, when n is sufficiently large, ξ can be

in any neighborhood of qα w.p.1. Then, |ϕ′′(ξ)| ≤M2 w.p.1. Note that q′α = ϕ(qα) and E[In] =

E [ϕ(q̂nα)], so taking the expectation on both sides of Equation (40), we have E[In]−q′α =O(n−1). �
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