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Abstract
In acoustic logging, most published studies of extracting array data characteristics are difficult to
avoid the interference from the false modes. The false modes contribute little to the acoustic
waveforms but makes the true modes hard to identify. We introduce a threshold of the energy
spectrum into the pole-calculation method to remove the false modes, thereby eliminating their
interferences to the true modes. To avoid the separation of multiple crossings of pole
distribution, we directly acquire the slowness dispersion of multiple modes by superposing the
single-mode results calculated from the weighted spectral semblance method. We processed the
slowness-frequency snapshot and design an extreme-point extraction formula to generate the
multi-mode scatterplot, which provide a precise slowness dispersion result. In terms of four
synthetic cases of acoustic logging, it has demonstrated that the proposed algorithm can provide
a high-resolution slowness dispersion profile for multiple modes. Even for acoustic logging while
drilling with strong tool wave components, the aliases and interferences of false modes do not
exist. Finally, a test proves that the proposed algorithm also has a good anti-noise ability.

Keywords: acoustic logging, mode-wave extraction, slowness dispersion, matrix pencil,
weighted spectral semblance

1. Introduction

In acoustic logging for oil-gas exploration, the full waveforms in the time domain recorded in the borehole are composed
of various wave groups, normally including the compressional (P-) wave, the shear (S-) wave, the Stoneley (St) wave, the
Pseudo-Rayleigh (PR) wave and others. Some of them are obviously dispersive, especially mode waves such as the PR wave.
Dispersion characteristics of these mode waves have a close relationship with the lithological and mechanical behaviors of
formations, which is helpful when analysing formation anisotropy (Sinha et al. 1994; Xu et al. 2017), acquire formation P-
and S- wave slowness (Tang et al. 1995; Jiang et al. 2017) and estimate formation stress (Sinha et al. 2000; Plona et al. 2002).

Many attempts have beenmade to obtain the dispersion characteristics of different wave groups accurately. Various meth-
ods of dispersion analysis generally fall into two categories until now: single-mode analysis and multimode analysis. As a
kind of method for single-mode analysis, the phase unwrapping algorithm has been proposed by Tribolet (1977) for seismic
signal processing, and was then extended by Su &Qiao (2003) to extract phase velocity of dispersive wave. Another widely-
used method for single-mode analysis is weighted spectral semblance (Nolte et al. 1997), which inverts the true modes by
searching the maximum of the semblance function within a certain slowness range and then rejecting the meaningless null
solution (Tang & Cheng 2004). The weighted spectral semblance (WSS) algorithm is stable and efficient, which has been
applied to the cross-dipole acoustic logs successfully (Sinha et al. 2000). However, these single-mode methods can only
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extract the strongestmode, which is inapplicable for complex signals involvingmultiplemodewaves. By contrast, multimode
analysis extracts all the mode waves simultaneously at a given frequency, such as the Prony algorithm (Lang et al. 1987; Tang
1997), matrix pencil algorithm (Hua & Sarkar 1990; Ekstrom 1996) and amplitude and phase estimation algorithm (Li &
Stoica 1996). Conventional methods for multimode analysis, without exception, bring about periodic aliases when calculat-
ing the slowness, which reduces the resolution of dispersion graphs seriously. To resolve this issue, Tang&Cheng (2004) and
Ma et al. (2010) combine Prony algorithm with WSS, Wang et al. (2012) mesh matrix pencil algorithm with WSS, and also
applied a pole calibration scheme to distinguish different individualmode. Li et al. (2015) extend the amplitude and phase es-
timation (APES) algorithm to forward and backward amplitude and phase estimation (FBAPES) algorithm. Recently, Zeng
et al. (2018) combine the semblance of slowness-time coherence based ondifferential phase (STC-DP) processingwith band
pass filtering algorithm. Although these combined or modified algorithms have significantly improved the inversion results
of the slowness dispersion, a performance-affected issue caused by false modes still need to be addressed. Because the num-
ber of true modes is uncertain and varies with frequency, a setting number greater than that of the true modes is required
for almost all the multimode algorithms. This produces some false modes interfering with the true modes in the dispersion
graph.

In order to avoid the interference caused by false modes and thereby improve the accuracy and resolution of the inver-
sion, we adopt a filtered strategy in this study according to the characteristic of frequency-spectrum energy to remove the
false modes. In this case, we only need to calculate the true modes instead of solving all (the number has been preset) the
modes together as in previous studies. Besides, without using the pole calibration scheme (Wang et al. 2012) to distinguish
different modes, we directly superimpose the discontinuous slowness results of individual modes to obtain a slowness graph
containing complete dispersion of the true modes. In addition, we present the extreme-point extraction scheme to improve
the resolution. The final result is shown in the form of scatterplot rather than slowness-frequency snapshot. In the rest of
this paper, we first detail the four steps of the proposed algorithm. Then we check the algorithm in terms of four synthetic
cases, including the acoustic logging while drilling (LWD) that has complex wave components. Furthermore, we tested the
algorithm’s anti-noise ability in the case of LWD. By comparison of the results between different algorithms, we demonstrate
the advantage of the proposed algorithm. Finally, we summarise the innovation points and conclusions.

2. Methodology

The algorithm proposed in this study consists of the following four segments: (1) calculating the poles of the mode waves
by matrix pencil (MP) algorithm; (2) removing the false modes according to a two-step scheme: sort all the modes by the
absolute value of complex amplitude first and then eliminate the false modes; (3) inverting the dispersion slowness of the
true modes by WSS and eliminating the aliases; and (4) extracting the extremum and generating the slowness-frequency
scatterplot.

2.1. Matrix pencil (MP) algorithm

In the first step to extract the dispersion information of acoustic logs, the received array acoustic signals should be Fourier-
transformed from time domain to frequency domain. According to the theory of borehole acoustics, the frequency spectrum
X(zn, 𝜔) can be approximately expressed as the sum of various mode waves,

X (zn,𝜔) ≈
p∑

l = 1

al (𝜔) e
ikl(𝜔)zn , (n = 0, 1… , m − 1) , (1)

where zn is the distance from the source to the (n + 1)-th receiver, 𝜔 is the angular frequency, p is the number of the mode
waves existing in the frequency spectrum (it is a hypothesis value), m is the number of receivers al and kl are the amplitude
andwavenumber of the l-thmodewave, respectively. At a given frequency𝜔0, we abbreviateX(zn, 𝜔0) to x(n) for simplicity.
Then substitute zn = z0 + nΔz and two complex variables bl = al eiklz0 and 𝜆l = eiklΔz into equation (1), which yields

x (n) ≈
p∑

l = 1

bl𝜆
n
l , (n = 0, 1… , m − 1) , (2)

where Δz is the distance between adjacent receivers. The value p is set according to the number of true modes and should
meet q ≤ p ≤ m − q (Ekstrom 1996), where q is the number of true modes. Since q is uncertain, a setting number p greater
than q is required. Normally, p = m

2
is appropriate, and we adopt this principle in this paper (m= 13).
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The MP algorithm, proposed by Hua & Sarkar (1990) and then improved by Ekstrom (1996), can be used to invert the
poles 𝜆l (l = 1, 2 … , p) when the inter-space between receivers is appropriate and the number of mode waves is less than
the number of receivers (p < m). Ekstrom (1996) explains the decomposition principle and steps ofMP algorithm in detail.
By constructing a parent Hankel matrix (X) and two submatrices (X0 and X1) according to x(n), the inversion problem of
𝜆l changes to the eigenvalue calculation of ([X1]

+[X0] − 𝜆[I])e = 0, and this is called forwardMP calculation, where the
superscript ‘+’ denotes the operation of Moore–Penrose generalised inverse (Penrose 1955). Likewise, the poles 𝜆l can also
be obtained by calculating the eigenvalue of ([X0]+[X1] − 𝜆[I])e = 0 with the flip sequence of observed data, and this
is called backward MP calculation. From the forward and backward MP calculations, we can obtain two results, 𝜆fl and 𝜆

b
l ,

respectively. If their phase difference is less than the specified tolerance (Ekstrom 1996), the calculated pole is identified as

the right one (the final result is averaged by 𝜆l =
√

𝜆
f
l ⋅ 𝜆

b
l ), or else it is considered as noise signal.

2.2. Removal of false modes

Once the poles 𝜆l are obtained, we can use the least square method to calculate the complex amplitudes bl corresponding to
the pmode waves (Wang et al. 2012). By this means, the spectrum of the full waveform is decomposed intomultiple ones for
the pmode waves. As a result, the problem changes frommultimode analysis to single-mode analysis.

Among thesepmodewaves,we are interested in the trueones that have larger amplitude; they are themajor contributors to
the acoustic loggingwaveforms.Nevertheless, the number of these truemodes is uncertain and varieswith frequency because
some of them tend to cut off at low frequencies and attenuate at high frequencies. Since the number of true modes cannot be
determined, people tend to set a value p that is greater than the number of true modes and then invert the p setting modes.
As a result, it is probable to calculate some mode waves with small amplitude (called false modes), which have negligible
contributions to the full waveforms but result in significant interference to the true modes. For this case, we propose a two-
step scheme to eliminate such influence of these false modes and improve the resolution of dispersion graph.

First, we sort the pmode waves in terms of their amplitudes (l = 1, 2 … , p). Since the amplitude spectrums of different
modes are almost the same on all receivers, pmodes can be sorted on any receivers (such as the first one).

B
′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b′

1(z0,𝜔1) b′

1(z0,𝜔2) . . . . b′

1(z0,𝜔N)

b′

2(z0,𝜔1) b′

2(z0,𝜔2) . . . . b′

2(z0,𝜔N)

. . . . . . . . . . . . . . . .

⋅ ⋅ ⋅ . . . . . . . . . . . .

b′

p(z0,𝜔1) b′

p(z0,𝜔2) . . . . b′

p(z0,𝜔N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

whereB′ is the sorted spectrummatrix;𝜔i(i = 1, 2, … N) is frequency samplingpointbi
′
(i = 1, 2, … P) is the amplitude

of the sorted mode arranged in descending order (b′

1 is maximum, b′

p is minimum).
Then we calculate the energy defined as follows according to Parseval theorem (Tamarkin 1926),

El =
N∑
j=1

|||b′

l

(
z0,𝜔j

)|||2 , l = 1, 2,⋯ , P, (4)

where El reflects the contribution of the l-th row of the matrix B′ to the full waveforms. It is found that the difference of El
betweendifferent rows is significant (several orders ofmagnitude).Therefore,we introduce a threshold andpropose equation
(5) to distinguish the true modes dominating the full waveform from all the modes,{

El ≥ 𝛽% ∗ El(max), Retain

El < 𝛽% ∗ El(max), Remove

}
, l = 1, 2,⋯ , P, (5)

where 𝛽 is the threshold coefficient. If the energy value of one mode is less than 𝛽% of the maximum value (El(max)), this
mode is considered as the one with negligible contribution or the false mode and thus needs to be removed. Conversely, this
mode is considered as the one dominating the full waveformand thus needs to be retained.The value of𝛽 is dependent on the
value of El. Similar to the means of choosing the effective value in singular value decomposition, we determine the threshold
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coefficient 𝛽 by finding sudden changing point of the El value (Zhao&Ye 2011). In our study, we set 𝛽 = 0.01 that performs
well for all the following cases.

Following the steps mentioned above, we can determine the number of the dominant modes and remove the false modes,
by which the interference from the false modes will be eliminated in final slowness dispersion graph.

2.3. Calculation of slowness dispersion without aliases

As a high-performance method for single-mode analysis, WSS (Nolte et al. 1997) is modified in this study for the issue of
slowness dispersion of signals with multiple mode waves. By calculating the self-correlation coefficients of all the predeter-
mined slowness-frequency points, we can obtain a series of slowness-frequency snapshots representing each single-mode.
Note that the so-called single-mode snapshot is not a pure one that could perfectly display the dispersion characteristic of a
single mode wave, but involves two or more modes. Actually, the dispersion profiles in these snapshots are generally discon-
tinuous in different frequency range. This is because not all the matrix elements in each row of equation (3) belong to the
same mode. To solve this problem, Wang et al. (2012) attempted to adopt the means of pole calibration to separate different
modes. Although theirmethodworkswell for the cases involving a small number ofmodes, it is difficult to obtain a pure single
modewhen there aremanymodeswithmultiple crossings of pole distribution. Consequently, we put to an alternative to con-
struct the slowness dispersion for the multiple mode waves by directly superimposing all the single-mode results calculated
byWSS. It is unnecessary to pursue a pure single mode before theWSS calculation. Although the dispersion profiles of each
single mode calculated byWSS is still discontinuous, the superimposition of them is indeed complete and continuous. This
also indicates that the true modes are not filtered out in the process of removing the false modes by the means of subsection
2.2, otherwise we cannot obtain the complete result of full-mode from the superposition of disorganised single-mode results.

The premise of applying WSS is to choose an appropriate slowness range. It should be noted that the phase ambiguity
of 𝜆l = eisl𝜔Δz will lead to that the slowness sl is periodically multi-valued with the period of 2𝜋

𝜔Δz
, which brings a barrier of

choosing slowness range when applying WSS. To determine the correct range of the slowness, we employ the scheme given
in previous studies (Ma et al. 2010; Wang et al. 2012). Firstly, we need to determine an approximate slowness sc, which is
determined by the time-slowness coherence (STC)method (Kimball &Marzetta 1984), then we consider the correct phase
of all the modes should be changed in the neighborhood of 2𝜋 centered on sc𝜔Δz, that is

sc𝜔Δz − 𝜋 < s𝜔Δz < sc𝜔Δz + 𝜋. (6)

To sum up, the semblance coefficients of each mode can be calculated according to⎧⎪⎨⎪⎩
𝜌l(𝜔, s) =

|||∑m−1
n=0 b′l

∗
(zn,𝜔) exp(−nis𝜔Δz)

|||√
(m−1)

∑m−1
n=0 b′l

∗
(zn,𝜔)b

′
l (zn,𝜔)

, sc −
𝜋

𝜔Δz
< s < sc +

𝜋

𝜔Δz

𝜌l(𝜔, s) = 0 else

⎫⎪⎬⎪⎭ , (7)

where b′

l
* is complex conjugate of b′

l ; s represents each value in the selected slowness range. Equation (7)means if the selected
slowness iswithin the limited range, then calculate the semblance coefficient; if not, consider it as aliases and set the semblance
coefficient to zero. In addition, to improve the smoothness of the result, we suggest adopting the weighted method using
nearby frequency points for every assigned frequency (Ma et al. 2010).

Finally, theweighted semblance coefficients ofP’ singlemodes are superimposed at the corresponding slowness-frequency
locations. In this way, we obtain the full-wave slowness-frequency semblance coefficients F(𝜔, s) as

F (𝜔, s) =
p′∑
l=1

𝜌l(𝜔, s). (8)

2.4. Acquisition of slowness-frequency scatterplot

Most previous studies use slowness-frequency snapshots to analyse the mode wave dispersion. Comparing with low-
resolution snapshots, we provide scatterplots with higher resolution, which are generated automatically by using code. The
scatterplots are acquired by extracting the extremum of the semblance coefficient at different frequencies. It is important to
note that these extremum points are not extracted directly from the superposed dispersion graph containing all the modes,
but from the single-mode dispersion slowness-frequency snapshot, respectively. The reason is that single-mode has the prop-
erty of slowness-frequency one-to-one correspondence. Itmeans for a single-mode slowness graph each frequency point only
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corresponds to one slowness value. When for the full-mode slowness graph, because some modes have cut-off frequencies,
the number of slowness extremum may change when in different frequency. This will lead to difficulty in determining the
number of extremums. Therefore, we adopt a scheme to acquire the final slowness scatterplot of full-mode by superimposing
the extremum of each single mode extracted.

The extreme-point extraction scheme is specified as follows including two steps. First, weoptimise the slowness-frequency
snapshot of each mode by setting the values with smaller semblance coefficients to zero. The reason being somemodes have
cut-off frequencies. If the small values are not set to zero, the extremums outside the cut-off frequency will appear when
applying extreme-point extraction scheme. Obviously, these values are incorrect and can be removed by optimisationmeans
as {

F′ (𝜔, s) = F (𝜔, s) F (𝜔, s) ≥ 𝛼 ∗ Fmax (𝜔, s)

F′ (𝜔, s) = 0 else

}
, (9)

where 𝛼 is the optimised coefficient, it performs well in practice when 𝛼 is set between 0.5 and 0.8. Note that if 𝛼 is too
large, some real mode information will be filtered out. Fmax(𝜔, s) is the maximum value in the semblance coefficient matrix.
F′(𝜔, s) represents the coefficient after optimising.

The second step is to extract the extremumof the semblance coefficients of each singlemode and then superimpose them,
by which we obtained extremummatrix Z containing all the true modes as

Z =
p′∑
l=1

[Zl (Fl)]
||||||Fl = N

max
k=1

(Fl(𝜔k,s))

, (10)

where N is the number of the discrete frequency points and Zl(Fl) is the corresponding slowness-frequency coordinate of
the l-th mode. Equation (10) means that for the l-th mode, the locations of the maximum value of the coefficient Fl(𝜔k, s)
are selected at each frequency point 𝜔k. Then we superimpose the coordinate locations of these P’ modes. Finally, we can
obtain the slowness dispersion scatterplot according to Z.

2.5. Processing flow chart

To sumup, themodifiedMPalgorithmweproposed consists of four steps. Besides, we provide two forms of dispersion result.
The processing flow chart is as follows:
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Table 1. Properties of the borehole fluid and formations.

Hard formation Soft formation Drill collar Borehole fluid

VP (m s−1) 3970 2000 5860 1470
VS (m s−1) 2455 1000 3130 —
𝜌 (kg m−3) 2320 2000 7800 1000

3. Numerical examples

In this section, we check the aforementioned mode-wave inversion algorithm in terms of four different cases, including the
monopole acoustic logging in a hard formation and the dipole acoustic logging in a hard formation and soft formation, respec-
tively, as well as acoustic logging while drilling (LWD) in a hard formation.We apply the real-axis integration (RAI) method
(Tsang & Rader 1979) to calculate the time-domain waveforms to be used as the initial data for inversion. The formation
and borehole-fluid parameters (Zheng et al. 2015;Wang et al. 2015) for the following cases are listed in Table 1. The acoustic
transmitter is assumed to be a cosine envelope pulse as

s (t) =

{
1
2

[
1 + cos 2𝜋

Tc

(
t − Tc

2

)]
cos 2𝜋f0

(
t − Tc

2

)
, 0 ≤ t ≤ Tc,

0, t < 0 or t > Tc ,
(11)

where f0 and Tc denote the center frequency and the pulse width of the source, respectively.
For cases with hard and soft formations, the central frequency of sources are 12.0 and 5 kHz, respectively. The sound

source is located on the axis of the fluid-filled borehole (wireline logging) or on the outer surface of drill collar (LWD). The
sonic tool consists of 13 receivers at an inter-receiver spacing of 0.1 m, and the first receiver is 3.0 m away from the source.
For each receiver, we record the waveforms of the first 10ms that have covered all themode waves. The borehole radius is set
to 0.1 and 0.117m, respectively for the wireline logging and the acoustic LWD. The inner and outer radii of the drill collar in
acoustic LWD are 0.027 and 0.090 m, respectively.

3.1. Monopole acoustic logging

Figure 1 presents the forward and inversion results formonopole acoustic logging in a hard formation. Shown in figure 1a are
the full waveforms in the time domain, where the dominant wave groups include the P-wave, the S- wave and PRwave as well
as the St wave in order of arrival time. Figure 1b–1f are the slowness-frequency graphs obtained by processing time-domain
waveforms in different means.

For the inversion result in figure 1b, the pre-number ofmodewaves p is set to seven.Without using the schemementioned
in subsection 2.2, all the seven modes are involved in figure 1b. By contrast, only four mode waves are retained in figure 1c,
corresponding to the four dominantwave groups.However, the number ofmodewaves is still set to seven, amongwhich three
false modes have been removed in figure 1c. In comparison to figure 1b and 1c, the negative effects of the false modes and
the advantage of the modes-removal scheme proposed in this study are obvious. Because of the false modes, the slowness-
frequency profiles for the true mode waves in figure 1b have discontinuity points at some frequencies. Such interferences are
eliminated in figure 1c and thus the interested mode waves including the St wave and the PR waves of each order as well as
the P- and S-waves are clearer.

Figure 1d shows the slowness-frequency snapshot obtained by using the conventional WSS algorithm. It is seen that the
St wave, the first-order PR wave and higher-order PR waves just appear within 0–8, 8–20 and after 20 kHz, respectively. This
is because the conventional WSS can only identify one single mode in each frequency. In addition, it can be found from the
upper and lower right corners of figure 1d that the slowness-frequency snapshot obtained directly byWSS algorithm contains
aliases. When observing the slowness-frequency snapshot in figure 1b or c after removing the aliases, there is a clear distinc-
tion of color in the upper and lower right corner. This is because the semblance coefficient of the original locations in figure 1d
has been changed to zero. This indicates that the scheme in subsection 2.3 can effectively eliminate aliases. Figure 1e is the
slowness-frequency snapshot after optimising, where there are no aliases and interferences of false mode waves. Compared
with figure 1c without optimising, the resolution in figure 1e improves significantly.

Shown in figure 1f are the scatterplots of slowness for three algorithms, including the WSS, the modified MP algorithm
and the forward synthetic algorithm. The forward synthetic result is calculated by finding the zero points of the character-
istic equation according to the boundary conditions (Tang & Cheng 2004). By comparison, the advantage of the algorithm
proposed in this study over the conventional WSS algorithm is obvious. For the WSS algorithm, the slowness points of the
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Figure 1. Monopole logging in the hard formation: (a) synthetic time-domain full waveforms; (b) slowness-frequency snapshot involved all the mode
waves; (c) slowness-frequency snapshot with removing false modes; (d) slowness-frequency snapshot inverted by the WSS algorithm; (e) slowness-
frequency snapshot inverted by the modified MP algorithm proposed in this study and (f) Comparison of dispersion scatterplot of WSS algorithm,
modifiedMP algorithm and forward synthetic algorithm.
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St wave and the first-order PR wave are displayed partially in the frequency domain, and those of the higher-order PR waves
are hardly visible because of the aliases. For our algorithm, however, the slowness points of all the mode waves as well as the
P- and S- waves are continuous and there are no aliases. Furthermore, by comparison with the result of forward synthesis
algorithm (black square), the two kinds of scatterplot almost coincide, which also proves the correctness of modified MP
algorithm proposed in this paper. Additionally, note that the extracted data of the St wave deviates from the forward result
at extreme low frequencies, which is a small fault for all the mode-wave extraction algorithms. On the other hand, it can be
found from comparison that the slowness resolution of the scatterplot in figure 1f is higher than that in figure 1e. Thus, we
suggest employing the scatterplot for dispersion analysis.

3.2. Dipole acoustic logging

In figures 2 and 3, we present the results for the dipole acoustic logging in a hard and a soft formation, respectively.
Figures 2a and 3a are the full waveforms in the time domain, while figure 2b–2f and figure 3b–3d are the corresponding
slowness-frequency graphs extracted by using different means.

For the case of the hard formation, as shown in figure 2a, the dominated two wave groups are the S-wave and the Flexural
(Fl)wave in order of arrival time. In this case, the P-wave is not identified from the time-domainwaveformbecause of its small
amplitude. Figure 2b gives the slowness-frequency snapshot in which all the seven setting modes are involved. Although the
S-wave and several orders of the Fl wave as well as the P-wave have been observed, there are serious interferences of the false
modes to these true modes. By comparison, the modes in figure 2c are significantly more coherent and smoother than in
figure 2b, where the false modes have been removed and four dominatedmodes have been remained. The comparison result
indicates that the scheme of removing false modes proposed in subsection 2.2 works well.

Figure 2d shows the result byWSS.Obviously, the Fl waves of each order only just appearwithin the 3–10, 10–20 and after
20 kHz, respectively, which indicates the limitation ofWSSmethod that only identifies the strongestmode in each frequency.
Shown in figure 2e is the slowness-frequency snapshot after optimising, where the wave groups are more distinctive than in
figure 2c. Figure 2f shows the comparisonof the slowness scatterplot among theWSS, themodifiedMPand forward synthetic
algorithm. It can be seen that the dispersion data obtained bymodifiedMP algorithm aremore comprehensive, including the
P- and S- wave that cannot be obtained by the WSS method. Besides, the scatterplot has higher resolution and intuitively
shows dispersion characteristics.

From the time-domain waveforms of the soft formation case in figure 3a, it is evident that there are two wave groups in
order of arrival time, which are the leaky P wave and the Fl wave. The S-wave is covered by the Fl wave and thus cannot be
recognised from figure 3a. As shown in figure 3b, we obtain the slowness-frequency profiles of the leaky P wave and Fl wave
by conventional WSS algorithm.

In contrast, in addition to the two waves obtained in figure 3b, our algorithm in figure 3c also obtained additional shear
waves. Nevertheless, the slowness-frequency profile of the S-wave is not very clear in figure 3c because of the poor resolution
of the snapshot. When we extract the slowness extremum and show it in figure 3d, it is clear that the Fl wave and S-wave are
separated intuitively. It illustrates the advantages of the extreme-point extraction scheme proposed in subsection 2.4.

Besides, for both figure 2f and figure 3d, the results of modifiedMP and forward synthetic algorithm always coincide well,
which proves the applicability of modifiedMP algorithm in dipole acoustic logging.

3.3. Acoustic LWD

Acoustic LWD,which acquires formation information in real time, has grown in popularity in recent years (Wang et al. 2015).
In this subsection, the proposed algorithm is used for acoustic LWD in order to exemplify its performance to process complex
signals. At the same time, we discuss the anti-noise ability of this algorithm by processing a noisy signal with a signal-to-noise
ratio (SNR) of 10. Figure 4a is the time-domain full waveforms of acoustic LWD, where the dominated waves in order of
arrival time are the second order (M2) and first order (M1) drill collar waves, the S and PR wave, the St wave and Inner-
Stoneley (In-St). Comparedwith thewireline logging in subsection 3.1 and 3.2, there are additional wave groups in the LWD
waveforms. Besides, some of the waves are overlapped together in time domain and meanwhile their dispersion curves are
especially close in the frequency domain, thus the signals of LWD are more complex than those of wireline logging.

In figure 4b, without removing the false modes, we obtain the slowness-frequency graph involving all the eight presetting
modes. Obviously, the true modes in figure 4b are seriously disturbed, resulting in difficulties in observation and extraction
of dispersion characteristics. Figure 4c shows the snapshot of slowness dispersion involving the five truemodes, in which the
three falsemodes have been removed. By comparison, the dispersion characteristics of the truemodes are clearly displayed in

446

D
ow

nloaded from
 https://academ

ic.oup.com
/jge/article-abstract/17/3/439/5762995 by guest on 29 M

ay 2020



Journal of Geophysics and Engineering (2020) 17, 439–450 Chen et al.

Figure 2. Dipole logging in the hard formation: (a) synthetic time-domain full waveforms; (b) slowness-frequency snapshot involved all the mode
waves; (c) slowness-frequency snapshot with removing false modes; (d) slowness-frequency snapshot inverted by the WSS algorithm; (e) slowness-
frequency snapshot inverted by the modified MP algorithm proposed in this study and (f) comparison of dispersion scatterplot of WSS algorithm,
modifiedMP algorithm and forward synthetic algorithm.
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Figure 3. Dipole logging in a soft formation: (a) synthetic time-domain full waveforms; (b) slowness-frequency snapshot inverted by the WSS algo-
rithm; (c) slowness-frequency snapshot inverted by the modified MP algorithm proposed in this study and (d) comparison of dispersion scatterplot of
WSS algorithm, modifiedMP algorithm and forward synthetic algorithm.

figure 4c, without any interference from the falsemodes, which demonstrates the ability of the proposed algorithm to process
complex signals.

Figure 4d compares the dispersion results obtained by different algorithms in the form of a scatterplot. The red points are
acquired by extracting the extremum from figure 4c, while the black squares denote forward synthetic results. It is clear that
all the extracted dispersion data are identical with the forward calculations, which indicates the correctness of the modified
MP algorithm proposed in this paper. Besides, it is worth noting that the In-St wave is extracted successfully by the modified
MP algorithm, although the velocity is almost the same as that of the St wave and the amplitude is smaller than that of the
St wave. Additionally, similar to figure 1f, the extracted data of the St wave deviates from the forward result at extremely low
frequencies.

Figure 4e compares thewaveforms of the noiseless signal (thewaveformabove) and the noisy signal (thewaveformbelow)
in the LWD. For the noisy signal, we added white Gaussian noise into the original signal with SNR = 10. It is evident the
original signal is subject to serious noise interference that we cannot identify the wave groups of small amplitude such asM1
and M2 drill collar waves. Figure 4f shows a slowness-frequency inversion snapshot of noisy signal. The result shows that
almost all mode waves still can be clearly identified except the In-St wave, which is submerged by noise. In fact, two steps in
our algorithm can remove the noise, the first uses forward and backwardMP average calculation (Ekstrom 1996), the second
is the proposed scheme for removing false modes in subsection 2.2. Despite this, some wave groups with low energy will be
covered by the introduced noise, which therefore is hard to recover. However, the wave groups with high energy are almost
unaffected by the noise.
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Figure 4. Acoustic logging while drilling in a hard formation: (a) synthetic time-domain full waveforms; (b) slowness-frequency snapshot involving
all the mode waves; (c) slowness-frequency snapshot with removing false modes; (d) comparison of dispersion scatterplot of WSS algorithm, modified
MP algorithm and forward synthetic algorithm; (e) comparison of noiseless signal and noisy signal (SNR = 10) and (f) slowness-frequency inversion
snapshot of noisy signal.

4. Conclusions

We have improved the mode-wave inversion combining MP and WSS algorithms. In terms of the four synthetic cases of
acoustic logging, it has been demonstrated that the proposed modifiedMP algorithm performs better than previous ones in
slowness resolution and display definition. Even for the acoustic LWD with complex wave components, it extracts accurate
dispersion characteristics of all the mode waves as well as the P- and S-waves.
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The innovations and advantages of the proposed algorithm are summarised as follows: (1) by introducing a threshold
of the energy spectrum, we have successfully removed all the false modes and thus eliminated their interference to the true
modes. In slowness-frequency graphs, the dispersion profiles of the mode waves are coherent and smooth. (2) By setting an
optimised coefficient to reject smaller semblance coefficients of slowness-frequency snapshot, we have contributed to the
acquisition of dominated wave groups andmeanwhile excluded dispersion points outside the cut-off frequency. It shows the
pre-optimisation scheme is helpful to reflect the dispersion characteristics accurately. (3) By an ingenious means, superim-
posing the extremum extracted from the slowness-frequency snapshot of every single-mode, we obtain a scatterplot with a
higher slowness-resolution than the snapshot. It is demonstrated that the proposed algorithmperformswell at distinguishing
twomode waves with similar velocities (the dispersion curves are close to each other). (4) By processing a signal containing
noise (SNR= 10) in the LWD, the good anti-noise ability of the proposed algorithm is shown.
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