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Deep Residual Networks With Dynamically
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Abstract—One of the significant tasks in data-driven fault
diagnosis methods is to configure a good feature set involv-
ing statistical parameters. However, statistical parameters
are often incapable of representing the dynamic behavior of
planetary gearboxes under variable operating conditions.
Although the use of deep learning algorithms to find a good
set of features for fault diagnosis has somewhat improved
diagnostic performance, the lack of domain knowledge in-
corporated into deep learning algorithms has limited further
improvement. Accordingly, this paper developed a variant of
deep residual networks (DRNs), the so-called deep residual
networks with dynamically weighted wavelet coefficients
(DRN+DWWC) to improve diagnostic performance, which
takes a series of sets of wavelet packet coefficients on var-
ious frequency bands as an input. Further, the fact that no
general consensus has been reached as to which frequency
band contains the most intrinsic information about a plan-
etary gearbox’s health status calls for “dynamic weight-
ing layers” in the DRN+DWWC and the role of the layers
is to dynamically adjust a weight applied to each set of
wavelet packet coefficients to find a discriminative set of
features that will be further used for planetary gearbox fault
diagnosis.

Index Terms—Deep residual learning, fault diagnosis, fea-
ture learning, planetary gearbox, wavelet packet transform.

I. INTRODUCTION

P LANETARY gearboxes [1] are superior to general parallel-
shaft gearboxes owing to their higher power density and

greater efficiency. They are already widely used for transmis-
sion in important mechanical systems, including gas turbines,
heavy-duty trucks, helicopters, and wind turbines [2]. Due to
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the harsh operating environment, planetary gearboxes often en-
counter gear tooth pitting and root cracking [3]. Some of the
failures can cause serious damage to the entire mechanical sys-
tem, which can result in human safety accidents and huge eco-
nomic losses. The development of an efficient fault diagnosis
tool for planetary gearboxes can ensure operational reliability
and reduce maintenance costs.

To date, there are two major approaches to fault diagno-
sis in planetary gearboxes—vibration analysis and data-driven
methods. Vibration analysis (e.g., spectral analysis or envelope
analysis) detects defect frequencies with the help of signal de-
composition techniques, such as wavelet transform and empiri-
cal mode decomposition (EMD) [4]. However, it is difficult to
observe defect frequencies in the spectrum (or power spectrum)
because they are mostly hidden by low-frequency deterministic
components (e.g., frequencies of 1× r/min and 2× r/min due to
misalignment) and high-frequency noise components. Because
planetary gearboxes are mostly connected to the motor, the par-
allel gearbox, and other rotating parts, the frequency compo-
nents are more complex. Moreover, varying the rotating speed
compounds the problem. Much professional knowledge, skill,
and experience are required to detect the defect frequencies. The
second fault diagnosis approach is based on data-driven meth-
ods. Data-driven methods use feature engineering and machine
learning to detect the onset of faults, pinpoint types of faults, and
predict remaining useful life [5]. The data-driven methods an-
alyze performance data based on a training dataset. Compared
to vibration analysis, these methods can be used in complex
systems with multiple and potentially competing failure modes
as long as the systems exhibit repeatable behaviors. This study
focuses on a data-driven method for fault diagnosis of planetary
gearboxes.

In traditional data-driven diagnosis approaches, researchers
mostly need to extract a number of statistical parameters (e.g.,
root-mean-square, energy, kurtosis, and so forth) and feed these
statistical parameters into machine learning algorithms, such as
k-nearest neighbors, random forest, naive Bayes model, sup-
port vector machines (SVMs), and neural networks (NNs). To
achieve an accurate diagnostic performance, the distributions
of the aforementioned high-dimensional statistical parameters
should be separable for each condition (i.e., class) to be consid-
ered in diagnosis. However, if the distributions are not separable
enough for differentiating conditions, it can be challenging to
achieve high diagnostic accuracy. Due to the complex structure,
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long transmission path, variable operating conditions, and strong
background noise, the distributions will be easily overlapped,
leading to low diagnostic accuracy.

Although many researchers use their domain knowledge to
find a reliable set of statistical parameters by retaining as much
discriminative information as possible for fault diagnosis of the
planetary gearbox, there is still no guarantee that the statis-
tical parameters can fully represent the dynamic characteris-
tics of planetary gearboxes under variable operating conditions.
Therefore, statistical parameter extraction can be an obstacle to
achieve higher diagnostic accuracies.

To avoid the above problems caused by the use of statisti-
cal parameters, feature learning, which refers to learning useful
features from the input observations, has been recently used for
machinery fault diagnosis. Classical shallow machine learning
algorithms are not able to adequately learn features from the
complex, redundant, and highly variable raw vibration signals
sampled at thousands or hundreds of thousands of hertz due
to their limited nonlinear transformation process. Deep learn-
ing, which refers to the representation learning that has multiple
layers of nonlinear transformation [6], can be a promising solu-
tion to address the limitations of the classical shallow machine
learning algorithms.

To be specific, deep learning can enable a hierarchical nonlin-
ear learning of high-level features built on top of low-level fea-
tures to discriminate different health conditions (e.g., healthy or
faulty). Low-level features are the basic details of the health con-
ditions, whereas high-level features are more abstract—that is,
high-level features, also known as feature maps, can be obtained
by a series of nonlinear transformations through multiple lay-
ers. Deep belief networks (DBNs), deep auto-encoders (DAEs),
and convolutional NNs (CNNs) are popular deep learning meth-
ods used for various fault diagnosis applications in recent years
[7]–[14]. DBNs and DAEs can conduct unsupervised pretraining
on the weights, which can ease the difficulty of the subsequent
supervised training of the deep networks. However, a key prob-
lem in DBNs and DAEs is that there are too many weights to
train when the inputs are raw vibration signals or their time–
frequency representations. In contrast, CNNs and deep residual
networks (DRNs) [15] can reduce the number of weights to be
optimized using the strategies of local receptive field and weight
sharing, which can be further effective for reducing computa-
tional burden during the training process. For example, Ince
et al. [10] used 1-D CNN for motor fault diagnosis, which not
only avoided the challenge of manually configuring the statis-
tical feature set, but also achieved high diagnostic accuracy.
Likewise, Ding and He [13] used CNNs to automatically learn
features from 2-D wavelet packet energy maps to diagnose the
spindle bearings under load fluctuations. These methods out-
performed conventional shallow machine learning-based fault
diagnosis methods.

Although the inclusion of deep learning in fault diagnosis has
been effective for learning reliable sets of features, the follow-
ing issues should be properly addressed to further improve di-
agnostic performance. First, classical deep learning algorithms
using sigmoidal activation functions often encounter the van-
ishing/exploding gradient problem found in training NNs with

gradient-based learning methods and backpropagation. Back-
propagation computes gradients by the chain rule, leading to
exponential decrease/increase of the gradients with the increase
of layers [16]. If, for example, the vanishing gradient problem
occurs, weights between layers in deep learning algorithms are
not properly optimized. Second, it is generally more difficult for
deeper NNs (or NNs with many layers) to update all their train-
able parameters to optimal values, which means simply stacking
more layers cannot ensure a better performance [15].

Deeper networks are becoming useful for vibration-based
fault diagnosis because they are capable of finding a good set
of features from complex and highly variable signals. However,
as mentioned above, it is challenging to train deeper networks.
DRNs are more effective for easing the difficulty of training
networks that are substantially deeper than the general CNNs
[17], [18] by using identity shortcuts, which help backpropa-
gate errors through multiple layers. For example, a DRN can
successfully train networks that have 1001 layers [19]. Accord-
ingly, DRNs have the potential to outperform classical CNNs
in learning a good set of features that will be used for fault
diagnosis of planetary gearboxes.

The key contribution of this study is the development of a vari-
ant of DRNs for vibration-based fault diagnosis, the so-called
deep residual networks with dynamically weighted wavelet co-
efficients (DRN+DWWC). Since a wavelet packet transform
is an effective tool for characterizing the transitory features of
nonstationary vibration signals, the developed DRN+DWWC
uses a series of sets of wavelet packet coefficients correspond-
ing to various frequency bands (i.e., 64 sets of wavelet packet
coefficients in this study) as input for fault diagnosis. Addition-
ally, “dynamic weighting layers” are included in the developed
DRN+DWWC to automatically adjust a unique weight applied
to each set of wavelet packet coefficients for the sake of finding a
discriminative set of features for fault diagnosis. This is mainly
because of dealing with an issue caused by the fact that no gen-
eral consensus has been reached as to which frequency band
contains the most intrinsic information about the diverse health
status of a planetary gearbox. In fact, the inclusion of domain
knowledge in deep learning—i.e., dynamic weighting layers in
DRNs—improves the ability of DRNs to learn discriminative
features (or feature maps) for vibration-based fault diagnosis.
The efficacy of the developed DRN+DWWC was verified for
planetary gearbox fault diagnosis in this study.

The remainder of this paper is organized as follows. Section II
introduces the experimental setup to collect vibration signals
from the planetary gearbox under variable operating conditions.
Section III then elucidates the developed DRN+DWWC fault
diagnosis method. In Section IV, the usefulness of the developed
method is verified by comparing with classical and state-of-the-
art machine learning algorithms used for fault diagnosis. Finally,
Section V gives conclusions.

II. DESCRIPTION OF PLANETARY GEARBOX HEALTH STATES

The developed DRN+DWWC method was used to pinpoint
health states (i.e., healthy and various faulty states) in the plan-
etary gearbox. The experiments in this study used a drivetrain
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Fig. 1. Drivetrain diagnostics simulator used for experiments.

TABLE I
SUMMARY OF HEALTH CONDITIONS OF THE PLANETARY GEARBOX

CONSIDERED IN THIS STUDY

Health
condition

Description Label Category

Healthy No seeded fault in the
planetary gearbox

H Class 1

A seeded fault on a ball in
a bearing with healthy
gears

SFB + HG Class 2

A seeded fault on the
inner raceway of a
bearing with healthy gears

SFI + HG Class 3

A seeded fault on the
outer raceway of a
bearing with healthy gears

SFO + HG Class 4

Faulty Composite seeded faults
on a bearing with healthy
gears

CSF + HG Class 5

A tooth root crack on the
planet gear with healthy
bearings

TRC + HB Class 6

A tooth surface pitting on
the planet gear with
healthy bearings

TSP + HB Class 7

A tooth chipped fault on
the planet gear with
healthy bearings

TCF + HB Class 8

A tooth missing fault on
the planet gear with
healthy bearings

TMF + HB Class 9

diagnostics simulator, which mainly consisted of a motor, a
two-stage planetary gearbox, a two-stage parallel gearbox, a
torque controller, and a magnetic brake, as shown in Fig. 1.
Vibration signals sampled at 25.6 kHz were collected via two
accelerometers that ensure horizontal and vertical movements
were measured in the gearbox.

For the sake of verifying the efficacy of the developed
DRN+DWWC fault diagnosis method, nine health states in
the planetary gearbox were used for diagnosis, as described in
Table I. Additionally, vibration signals collected in the hori-
zontal and vertical directions were used to form dataset 1 and
dataset 2, respectively. Likewise, 12 56-s vibration signals were
recorded at the variable rotating speed from 20 to 38.7 Hz under
three different load conditions, as summarized in Table II. More

TABLE II
SUMMARY OF OBSERVATIONS FOR EACH HEALTH CONDITION

Load condition Number of 56-s
vibration signals

for each load
condition

Number of
observations

obtained from a
56-s vibration

signal

Total number of
observations used

for each health
condition

0 V 4 350
4 V 4 350 4200
8 V 4 350

specifically, each 56-s vibration signal was further divided into
350 0.16-s vibration signals. Hence, the total number of obser-
vations for each health state considered in this study is 4200.

III. DRN+DWWC

Fig. 2 illustrates an overview of the developed DRN+DWWC
fault diagnosis method. As shown in Fig. 2, the DRN+DWWC
uses a matrix involving wavelet packet coefficients on various
time–frequency bands to learn discriminative features from the
matrix. More specifically, the developed DRN+DWWC learns
low-level features at shallow layers (i.e., layers close to the in-
put) and mid-/high-level features at deeper layers. Finally, a
fully connected output layer is used for classification; the iden-
tification of different health conditions in the planetary gearbox
is a multiclass classification problem. The primary contribution
of this paper is the development of a variant of a DRN for
diagnostics.

A. Input of DRN+DWWC

In vibration-based machine fault diagnosis applications, the
fact that the properties of the vibration signals vary with time
due to variable operating conditions (e.g., rotating speed, loads)
usually calls for time–frequency analysis. This is mainly be-
cause time–frequency analysis is effective for scrutinizing a
1-D signal in both the time and frequency domains simultane-
ously. In fact, various time–frequency representations, such as
short-time Fourier transform (STFT), EMD, and wavelet trans-
form, have been used for time–frequency analysis. Considering
the fixed frequency resolution of STFT and the lack of theoret-
ical foundation of EMD, the developed fault diagnosis method
employed wavelet transform [20], which can enable powerful
multiresolution time–frequency analysis. More specifically, a
discrete wavelet packet transform is preferable in this study be-
cause a continuous wavelet transform produces a large amount
of redundant information due to overlapping.

Wavelet packet decomposition is a discrete algorithm to an-
alyze nonstationary signals, which decomposes a signal into
several frequency bands, and in each frequency band, there are
a series of wavelet packet coefficients. Fig. 3 shows the pro-
cess of building an input matrix for the DRN+DWWC. In this
study, the total number of samples in each observation is 4096.
Then, each terminal node contains 64 wavelet packet coeffi-
cients; 4096/2depth = 4096/26 = 64, where “depth” refers to
the depth of wavelet packet decomposition. Further, the input
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Fig. 2. Developed DRN+DWWC method, where a residual building block mainly involves two convolutional layers, a dynamic weighting layer, and
an identity shortcut; L, M, and N are the numbers of residual building blocks used to learn low-, mid-, and high-level features, respectively.

Fig. 3. Matrix involving wavelet coefficients on various time–frequency
bands, where Wi,j is a set of wavelet coefficients at the jth terminal node
at the ith decomposition level. In this study, i = 6 and j = 2i − 1.

matrix is formed by stacking 64 sets of wavelet packet coeffi-
cients on various frequency bands, and further used as the input
for the DRN+DWWC.

There are several advantages of using a matrix of wavelet
packet coefficients as an input of the developed DRN+DWWC
for fault diagnosis. First, because there is no general consensus
on a frequency band which contains the most intrinsic infor-
mation about a planetary gearbox’s diverse health status, it is
worthwhile to learn a good set of features from a series of sets of
wavelet packet coefficients corresponding to various frequency
bands. Second, using a matrix of wavelet packet coefficients
as an input for the developed DRN+DWWC enables learning
nonlinear relationships among wavelet packet coefficients on
neighboring frequency bands.

B. Feature Learning in DRN+DWWC

CNNs [17] are deep learning methods that use convolutional
layers and mostly have high computational complexities. With
the development of computational hardware, CNNs have at-
tracted attention due to their excellent performance. Compared
with the traditional fully connected deep NNs, CNNs greatly
reduce the number of trainable parameters (weights and biases)

through the strategies of local receptive field and weight shar-
ing [21]. Local receptive field means that each neuron is only
connected to some neurons of the previous layer and the next
layer, and weight sharing means the weights of each neuron
are also shared with other neurons in the same layer. The two
strategies can reduce the number of weights and make it eas-
ier to train deeper networks. A DRN is a type of a CNN with
identity shortcuts in its architecture. For deeper architectures,
the aforementioned trainable parameters are generally not easy
to optimize. The identity shortcuts of DRNs can help the back-
propagation of gradients, so that the weights and biases can be
updated efficiently.

Fig. 4 shows the architecture of the developed
DRN+DWWC, which uses the matrix of wavelet packet co-
efficients as input and consists of standard convolutional layers,
dynamic weighting layers, identity shortcuts, a global average
pooling layer, a fully connected layer and so forth. More de-
tails about the components of the developed DRN+DWWC are
given in subsequent sections.

1) Standard Convolutional Layers: The standard convolu-
tional layer uses the strategies of local receptive field and weight
sharing. These two strategies are mathematically implemented
by means of a convolution operation. In this layer, the input fea-
ture map is convolved with one or more convolutional kernels
(also called filters). The local receptive field is the same size
as the kernel used in the convolutional layer. The convolutional
kernel slides on the input map, so that the parameters (weights)
of the kernel are shared, mathematically expressed as follows:

xl
j = f

⎛
⎝ ∑

i∈Mj

xl−1
i ∗ kl

ij + bl
j

⎞
⎠ (1)

where xl−1
i is the ith channel of the feature map at the (l − 1) th

layer, xl
j is the jth channel of the feature map at the lth layer, Mj

is the selection of channels used for calculating the lth output
channel, k is the convolutional kernel, b is the bias, and f(·) is
the activation function [14].

It is notable that the weights in the convolutional kernels
and the biases are optimized by minimizing backpropagation
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Fig. 4. (a) Architecture of the DRN+DWWC, where “Conv 3 × 3” refers to the convolutional layer with m, 2m, or 4m 3 × 3 kernels, “/2” means
reducing the feature map size with a stride of 2, “dynamic” refers to a dynamic weighting layer, “BN” stands for batch normalization, and “ReLU” is a
rectified linear unit activation function. (b) 2 × 2 moving window that has a stride of 2, where an averaging operation is carried out for downsampling
within the window.

errors during the training process. Nowadays, the 3 × 3 kernel
is widely used because it is computationally efficient [22] and
large enough for capturing basic local features, including local
extremes. Meanwhile, the activation function can be used for
achieving nonlinear transformations. In this paper, the rectified
linear unit (ReLU) activation function [23] is used, rather than
the traditional sigmoid and hyperbolic tangent (tanh) activation
functions. The ReLU activation function is expressed by

f (x) = max (x, 0) . (2)

The ReLU activation function is more effective for avoiding
the vanishing gradient problems than the classical activation
functions. The major reason is that the absolute values of the
derivatives of standard sigmoid and tanh functions are mostly
smaller than 1, and the gradients may become very close to 0
when backpropagating the error through multiple layers.

2) Dynamic Weighting Layers: The role of dynamic
weighting layers is to apply dynamic weights to the input. More
specifically, a single unique weight is applied to the wavelet
coefficients on a particular frequency band, which can be ex-
pressed by

yl
i = xl−1

i wl
i (3)

where xl−1
i refers to the ith row of the input feature map at the

lth dynamic weighting layer, e.g., the ith row of the input feature
map at the first dynamic weighting layer contains 64 wavelet
coefficients, wl

i refers to a weight that can be multiplied with
each of the wavelet coefficients at the ith row, and yl

i refers to
the ith row of weighted feature map. The process of applying
the row-wise weights to the feature map is depicted in Fig. 5,
resulting in the weighted feature map.

Note that the weights in the dynamic weighting layer are also
optimized during the training process of DRN+DWWC using
a gradient descent algorithm. The gradients for the weights at a
dynamic weighting layer can be calculated as follows:

∂E

∂wi
=

∑
j,k

∂E

∂yk
ij

∂yk
ij

∂wi
=

∑
j,k

∂E

∂yk
ij

xk
ij (4)

Fig. 5. Weighted feature maps.

where E is the error (i.e., the softmax cross-entropy loss which
is introduced subsequently) and yk

ij = wix
k
ij is an element in

the output feature maps of a dynamic weighting layer. Feature
maps can be viewed as a 3-D matrix, as depicted in Fig. 5, where
i, j, and k are the indexes of row, column, and channel of the
feature maps, respectively. Then, the weights can be updated as
follows:

wi ← wi − η
∂E

∂wi
(5)

where η is the learning rate. In addition, to match the feature
map size with the convolutional layers, average pooling with a
stride of 2 is carried out after the first and three other dynamic
weighting layer layers, as illustrated in Fig. 4(b). Likewise, zero
padding is used to match the number of channels.

3) Residual Building Block: In a DRN, a residual building
block often consists of several convolutional layers, batch nor-
malizations (BNs), ReLU activation functions, and one identity
shortcut, as shown in Fig. 6(a). Specifically, BN [24] is a type of
normalizing method that can be applied to each batch between
the layers in deep NNs. It aims to solve the internal covariate
shift problem, i.e., the distribution of feature maps in the layers
continuously changes in the training process, which can de-
crease the training speed. Likewise, a series of building blocks
are stacked after the first convolutional layer. The identity short-
cuts in these stacked building blocks are useful for optimizing
trainable parameters in error backpropagation.
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Fig. 6. (a) Residual building block in the DRN and (b) developed resid-
ual building block with a dynamic weighting layer.

In the developed DRN+DWWC, a single dynamic weighting
layer is employed in a residual building block [see Fig. 6(b)].
Although the inputs passing to building blocks are feature maps
obtained by a series of convolutions and nonlinear transforma-
tions, the use of dynamic weighting layers can further emphasize
different contributions of wavelet packet coefficients on differ-
ent frequency bands in the process of learning discriminative
features that will be used for fault diagnosis of the planetary
gearbox. He et al. [19] claimed that full preactivation—i.e., BN
and ReLU are conducted before the input is propagated to a con-
volution layer [see Fig. 6(a)]—is helpful for updating trainable
model parameters and reducing overfitting. Thus, the underly-
ing concept of full preactivation was employed in the developed
DRN+DWWC.

As shown in Fig. 6(a), let x donate the input, and y donate
the output, each residual building block in the DRN can be
expressed in a general form as follows:

y = x + F (x,W C ) (6)

whereF(·) donates a nonlinear function for the path which con-
tains two BNs, two ReLU activation functions and two convolu-
tional layers, and W C donates the parameters to be optimized
for this path. Likewise, the output of the residual building block
in DRN+DWWC can be expressed as follows:

y = x + F (x,W C ) + G (x,W D ) (7)

where G(·) donates a nonlinear function for the path which
contains a BN, an ReLU activation function, and a dynamic
weighting layer, and W D donates the parameters to be opti-
mized for this path. In DRN+DWWC, the developed residual
building blocks are stacked as depicted in Fig. 4(a).

4) Softmax Cross-Entropy Loss Function: The softmax
cross-entropy loss function [21] was used in the fully con-
nected output layer of the DRN and adopted in the developed
DRN+DWWC method as the objective function to be mini-
mized, rather than the squared error loss function. In classifica-
tion problems, the probabilities of an observation belonging to
all the classes should be in the range of [0, 1] and sum up to 1.
Considering this range, the softmax activation function is used,
which is expressed by

qj (x) =
exj

∑N c la s s
i=1 exi

, for j = 1, . . . , Nclass (8)

where xj is the jth input feature of the softmax activation
function, qj (x) is the output which can be interpreted as the

estimated probability of an observation x belonging to the jth
class, and Nclass is the total number of classes [25]. Then, the
cross-entropy loss function is used to measure the error between
the outputs and target values (i.e., labels), which is expressed by

E (p (x) , q (x)) = −
N c la s s∑
j=1

pj (x) log (qj (x)) (9)

where p(x) is the label of the observation x, and pj (x) can be
interpreted as the real probability of x belonging to the jth class.
In general, the cross-entropy loss function has a higher training
speed than the squared error function, because, for example, it
has larger gradients when the output is close to 0 and the target
value is 1 (i.e., the real probability of the observation belonging
to the class is 100%), so that the trainable parameters can be
updated more efficiently [25].

IV. EXPERIMENTAL RESULTS

The developed DRN+DWWC method was implemented us-
ing TensorFlow, which is Google’s open source software li-
brary for machine learning, and applied for fault diagnosis of
the planetary gearbox under variable operating conditions. As
mentioned in Section II, the developed method was verified on
two different datasets. The developed method was also tested
on datasets with a higher level of noise; although each of the
0.16-s vibration signals already contained a certain level of
noise, Gaussian noise was artificially embedded into them,
yielding a signal-to-noise ratio of 5 dB, for the sake of in-
creasing the level of difficulty in fault diagnosis under the as-
sumption that the vibration signals can contain a higher level of
Gaussian noise in real-world fault diagnosis applications. That
is, the robustness to noise of the developed DRN+DWWC can
also be verified in this study. Likewise, although a comparison
between the developed DRN+DWWC method and the classi-
cal and state-of-the-art machine learning-based fault diagnosis
methods with or without feature learning ability involves un-
avoidable errors due to the use of different hyperparameters, the
goal of the comparison is to show the potential for improved
diagnostic performance of the developed method for fault diag-
nosis of the planetary gearbox rather than to conduct a precise
performance comparison.

A. Hyperparameter Setup for DRN+DWWC

There have been many empirical suggestions for the hyper-
parameters, and this paper sets them according to [15], [16], and
[19]. To be specific, the initial learning rate is set to 0.1, divided
by 10 at 40 and 80 epochs, and terminated at 100 epochs. The
purpose of this schedule is to update the trainable parameters
quickly at the beginning, and fine-tune the trainable parameters
at the end of the training process.

The mini-batch [21] refers to the group of observations that
feed into the networks at the same time, and its size is set to
128. On one hand, if a large training dataset is fed into the
deep networks at the same time, it requires a great amount of
memory, which is mostly impractical for personal computers.
On the other hand, dealing with a batch of observations in each
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Fig. 7. Diagnostic performance in terms of accuracy. Note that m indicates the number of convolutional kernels in Fig. 4.

time can accelerate training by taking advantage of parallel
computation [21].

Momentum is a weight-updating strategy that allows the up-
dates of previous iterations to contribute to the update of the
current iteration [21]. Its purpose is to accelerate the training
process and avoid the local optima. For example, if the weights
need to be continuously updated toward the same direction, it
will be faster if there is a contribution from the update of the
previous iteration; if there are some local optima in this direction
before reaching the global optima, there will be a larger chance
for the NNs to jump over the local optima with a larger step
(the gradient in this iteration plus a contribution of the update
from the previous iteration). In general, the contribution of the
previous iteration is recommended to be 0.9.

The weights (including the dynamic weights on wavelet co-
efficients) are initialized according to [16], and the biases are
initialized to be zeros. The problem in traditional weight ini-
tialization (using zero-mean Gaussian random values with a
constant standard deviation) is that the high-level feature maps
may have extremely large or small absolute values at the end of
deep NNs when using the ReLU activation function [16]. The
reason is that the traditional randomly initialized weights have
a greater chance to magnify or shrink the input data layer by
layer. He et al. [16] initialized the weights by trying to keep the
variance of input data unchanged when the data go through the
networks, so that the values of high-level feature maps can be
kept in a reasonable range.

L2 regularization is a strategy that aims to increase the gener-
alization ability (e.g., to ensure relatively high accuracy on the
test dataset), because the method that has high accuracy on the tr-
aining dataset does not essentially have high accuracy on the test
dataset. This situation can be caused by the overfitting problem
[21]. To be specific, if the weights in the deep NNs have ex-
tremely large values, it would be easy for the test data to have
large errors after multiplying with these weights, even if the

test data have similar values as the training data. Therefore,
a penalty, which is known as weight decay, is applied on the
weights, so that the weights are preferred to have small absolute
values [21]. In the developed DRN+DWWC, the coefficient of
weight decay (which defines how strong the penalty is) is set to
0.0001, to remain consistent with the DRN [15].

As shown in Fig. 4(a), m is the number of convolutional
kernels in the first convolutional layer. In deep learning methods,
a convolutional kernel is actually a trainable feature extractor.
When there are more convolutional kernels in the first layer,
there are more kinds of basic local features being extracted
from the input observation. The more basic local features can
be nonlinearly integrated to be much more complex high-level
features. After the supervised training process, the high-level
features can become discriminative between different classes.
In this study, the experiments were conducted with m equal to
1, 2, and 4.

B. Performance Comparisons

The developed DRN+DWWC method was not only com-
pared with traditional fault diagnosis methods employing shal-
low machine learning algorithms (multiclass SVMs and a NN)
with statistical parameters to verify the usefulness of feature
learning, but also with the state-of-the-art deep learning-based
methods (CNN and DRN) to show the enhanced feature learn-
ing ability. The experimental results are shown in Fig. 7, and
further discussion is as follows.

1) Usefulness of Feature Learning in Fault Diagnosis:
To verify the usefulness of feature learning, classical supervised
learning-based diagnosis methods (i.e., multiclass SVMs and a
NN) using the statistical parameters in [26] were compared with
the diagnosis methods with feature learning ability. In Fig. 7, it is
obvious that the performance of the classical diagnosis methods
is mostly inferior to the methods involving feature learning in
noiseless and noisy environments.
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Fig. 8. Example of (a) training losses and (b) testing losses obtained from the CNN, DRN, and DRN+DWWC with m = 4 on the original dataset 1.

Fig. 9. Three-dimensional representations of high-dimensional feature maps at different layers in the CNN with m = 4, where a testing dataset
from dataset 1 under the cross-validation scheme was used for the sake of visualizing feature maps in a lower dimensional space. Likewise, the CNN
yielded 98.72% accuracy on the testing dataset. “Conv” in the brief architecture refers to a convolutional layer, and “CBB” refers to the convolutional
building block, which does not have an identity shortcut when compared with the residual building block.

More specifically, the developed DRN+DWWC method with
m = 4 (see Fig. 4) at least improved 30.23% and 29.02% of
training accuracy and testing accuracy in a noiseless environ-
ment, respectively, compared to the conventional fault diagnosis
methods using statistical parameters. Additionally, the devel-
oped DRN+DWWC method with m = 4 was more robust to
noise than the conventional fault diagnosis methods by yield-
ing at least 32.82% and 25.62% performance improvements in
terms of training accuracy and testing accuracy, respectively, in
a noisy environment.

2) Comparison Between the DRN+DWWC Method and
the State-of-the-Art Methods With Feature Learning Abil-
ity: As shown in Fig. 7, the developed DRN+DWWC method
outperformed the other feature learning-based diagnosis meth-
ods in terms of training accuracy and testing accuracy. Fig. 8
presents an example of training and testing losses obtained from
the CNN, DRN, and DRN+DWWC on the original dataset 1.

As shown in Fig. 8, the CNN, DRN, and DRN+DWWC do
not encounter overfitting, because their testing losses converged
to a certain level after a series of epochs. Consequently, their
accuracies are reliable for performance comparisons. One in-
teresting observation in Fig. 8 is that the training losses have
more fluctuations than the testing losses. This is mainly because
the training losses are calculated from the mini-batches. That
is, a small number of observations are randomly selected for a
mini-batch and the associated training loss can be significantly
influenced by a few misclassifications in the batch. Unlike the
training losses, the testing losses are relatively less fluctuated
due to the relatively larger number of observations used for
testing. Our analysis indicated that the use of dynamic weight-
ing layers to dynamically adjust the significance of wavelet
coefficients on different frequency bands improved the ability
of learning discriminative features for identifying nine health
states in the planetary gearbox.
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Fig. 10. Three-dimensional representations of high-dimensional feature maps at different layers in the DRN with m = 4, where a testing dataset
from dataset 1 under the cross-validation scheme was used for the sake of visualizing feature maps in a lower dimensional space. Likewise, the
DRN yielded 99.52% accuracy on the testing dataset. “Conv” in the brief architecture refers to a convolutional layer, and “RBB” refers to a residual
building block in DRN.

Fig. 11. Three-dimensional representations of high-dimensional feature maps at different layers in the developed DRN+DWWC with m = 4, where
a testing dataset from dataset 1 under the cross-validation scheme was used for the sake of visualizing feature maps in a lower dimensional space.
Likewise, the developed DRN+DWWC yielded 99.60% accuracy on the testing dataset. “Conv” in the brief architecture refers to a convolutional
layer, “Dynamic” refers to a dynamic weighting layer, and “DRBB” refers to the developed residual building block.

In addition, a nonlinear dimensionality reduction method, the
so-called t-distributed stochastic neighbor embedding [27], was
employed to provide 3-D representations of high-dimensional
feature maps at different layers in the CNN, DRN, and
DRN+DWWC, respectively, as shown in Figs. 9–11. Although
a comparison between the feature maps in a lower dimensional
space involves unavoidable errors due to the loss of information
in dimensionality reduction, the goal of the comparison is to ex-
plore the effectiveness of each deep learning method in learning
a discriminative set of features for fault diagnosis. In Figs. 9–11,
it is obvious that diverse health states (or classes) are heavily
overlapped at the input layer, whereas they become more separa-
ble at deeper layers. Specifically, the developed DRN+DWWC
was the most effective for learning a discriminative set of fea-
tures, yielding 99.60% accuracy (on a testing dataset in Fig. 11).
That is, a small number of misclassifications were observable
among the health states, as depicted in Fig. 11.

V. CONCLUSION

Finding a good set of features has been a long-standing issue
in the fault diagnosis of planetary gearboxes subject to variable
operating conditions. To address this issue, a DRN+DWWC
method was developed to learn a set of features that could dis-
criminate diverse health states in the planetary gearbox—one
health state and eight faulty states. More specifically, dynamic
weighting layers in the developed deep learning architecture
were used to optimize weights applied to wavelet coefficients
on various frequency bands for the sake of exploring how a
series of wavelet coefficients on a particular frequency band
contributed to discriminating the gearbox’s health states.

The usefulness of feature learning was verified by a com-
parison between the developed DRN+DWWC method and the
classical machine learning-based diagnosis methods (i.e., one-
against-one multiclass SVMs and a three-layer NN) employ-
ing statistical parameters. The developed method is able to
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automatically learn discriminative features from the training
data. Experimental results indicated that this method outper-
formed the SVM- and NN-based fault diagnosis methods by
yielding 30.77% and 28.82%, 25.63%, and 23.66% performance
improvements in terms of the averages of training accuracies and
testing accuracies (under noiseless and noisy environments), re-
spectively. That is, the inclusion of feature learning is significant
for fault diagnosis of planetary gearboxes.

Likewise, the developed DRN+DWWC method was superior
to the state-of-the-art deep learning-based diagnosis methods
with feature learning ability. More specifically, the developed
method was more effective for learning discriminative features
that could reduce a classifier’s burden to discriminate multiple
gearbox health states than the state-of-the-art deep learning al-
gorithms. This was mainly due to the inclusion of a series of
“dynamic weighting layers” to adjust the importance of wavelet
coefficients on different frequency bands during the training
process. As a consequence, the developed method resulted in
11.43% and 10.60%, 3.74% and 3.87% performance improve-
ments compared with CNN- and DRN-based methods in terms
of the averages of training accuracies and testing accuracies (us-
ing different numbers of convolutional kernels in noiseless and
noisy environments), respectively.

In this study, the efficacy of the developed DRN+DWWC
that learns a good set of features was verified by fault diag-
nosis of planetary gearboxes. However, this method would be
applicable to general data-driven fault diagnosis with minor
changes (e.g., other machinery and electronic components or
systems).
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