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a b s t r a c t

This paper studies the iterative solutions of Lyapunov matrix equations associated with Itô
stochastic systems having Markovian jump parameters. For the discrete-time case, when
the associated stochastic system is mean square stable, two iterative algorithms with
one in direct form and the other one in implicit form are established. The convergence
of the implicit iteration is proved by the properties of some positive operators associated
with the stochastic system. For the continuous-time case, a transformation is first per-
formed so that it is transformed into an equivalent discrete-time Lyapunov equation. Then
the iterative solution can be obtained by applying the iterative algorithm developed for dis-
crete-time Lyapunov equation. Similar to the discrete-time case, an implicit iteration is also
proposed for the continuous case. For both discrete-time and continuous-time Lyapunov
equations, the convergence rates of the established algorithms are analyzed and compared.
Numerical examples are worked out to validate the effectiveness of the proposed
algorithms.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Stochastic systems including Markovian jump system as a special case has attracted a lot of researchers in the past several
decades since many practical systems can be modeled by stochastic systems with Markovian jumping parameters, for exam-
ple, network control systems [23], a model with random abrupt changes, sudden environmental changes and abrupt varia-
tions of the operating point and so on [20]. A set of control problems that have been well studied in deterministic setting are
extensively extended to stochastic setting. These problems include stability and stabilization [8,11], detectability and
observability [13], estimation [5], time-delayed control [19], robust control [26], and filtering [21,24,25].

Amongst some of the most important problems in control theory, stability and stabilization in both deterministic setting and
stochastic setting have received much more attention than other problems. For deterministic system, it is well known that the
stability of a system is equivalent to the existence of a positive definite solution of the associated Lyapunov equation. This ele-
gant result has been extended to the stochastic setting by virtue of (stochastic) Lyapunov direct approach. For example, for the
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Itô stochastic system with Markovian jumps, it is shown that the mean square stability of the system is equivalent to the exis-
tence of positive definite solution of some coupled Lyapunov equations (see, e.g., [27]). Lyapunov equation is not only funda-
mental in stability analysis but also in stabilizing controller design in both deterministic setting and stochastic setting.
Hence, finding solution to this class of equations, especially, in the case that the associated system is (mean square) stable, is
extremely important. However, to the best knowledge of the authors, a few results for Lyapunov equations associated with sto-
chastic system are available in the literature. For example, for the coupled Lyapunov equation associated with discrete-time
Markovian jump linear system which is mean square stable, reference [1] presents an iterative approach by assuming the zero
initial condition and Schur stability of each subsystem. However, it is shown in [22] that these two assumptions are not neces-
sary for the convergence of the proposed iterative algorithm. Moreover, without assuming the mean square stability of the asso-
ciated stochastic system, references [22,29] propose two alternative algorithms by using implicit iteration and gradient based
iteration, respectively. We notice that linear matrix equation is a hot topic in control theory and has received much attention in
the past several decades (see, for example, [2,35,37,3,4,6,7,12,14,33,15,16,18,34,36,32,30] and the references therein). How-
ever, as far as we know, no method is available for Lyapunov equation associated with continuous-time stochastic systems.

In this paper, we will study the numerical solution of the Lyapunov equations associated with Itô stochastic systems with
Markovian jumps which include the Markovian jump system as a special case. For the discrete-time Lyapunov equation,
when the associated stochastic system is mean square stable, we give a direct iteration and an implicit iteration to compute
the numerical solutions, whose convergence are verified by virtue of properties of some positive operators. A necessary and
sufficient condition for the convergence of the implicit iteration is also established based on the spectral radius of some aux-
iliary matrix. For the continuous-time Lyapunov equation, a transformation is first performed so that it is transformed into
an equivalent discrete-time Lyapunov equation. An iterative solution can then be obtained by applying the iterative algo-
rithm developed for the discrete-time Lyapunov equation. Similar to the discrete-time case, we also give an implicit iteration
for the continuous-time equation. For both discrete-time and continuous-time Lyapunov equations, the convergence rates of
their corresponding algorithms are analyzed and compared. Numerical examples are worked out to validate the effective-
ness of the proposed algorithms.

The rest of this paper is organized as follows: Section 2 presents some notations and preliminary results that will used in
the paper. The discrete-time stochastic Lyapunov equation and the continuous-time Lyapunov equation are then respec-
tively studied in Sections 3 and 4. Numerical examples are reported in Sections 5 and 6 concludes the paper.

2. Notations and preliminaries

We let Rn�m; Cn�m represent, respectively, the n�m dimension real and complex matrices, Sn�n represent the n dimen-
sion symmetry matrices, AT represent its transpose, � represent the Kronecker product, C� ¼ k : Refkg < 0; k 2 Cf g and
C� ¼ k : jkj < 1; k 2 Cf g. Let Rn�nðSn�nÞ denote the linear space made up of all ordered N-tuple of real matrices (real symmet-
ric matrices), that is, C ¼ C1;C2; . . . ;CNð Þ with Ci 2 Rn�n Ci 2 Sn�n� �

, where N P 1 is a given integer. We denote
Rn�n
þ ¼ fC ¼ C1;C2; . . . ;CNð Þ 2 Rn�n : Ci > 0; i 2 Ng where N ¼ 1;2; . . . ;Nf g. For any matrix X ¼ x1 x2 � � � xn½ � 2 Cm�n,

the stretching function is defined as
vecð�Þ ¼ xT
1 xT

2 � � � xT
n

� �T
: Cm�n ! Cmn:
For any P ¼ P1; P2; . . . ; PNð Þ 2 Rn�n, define the operator uð�Þ : Rn�n ! Rn2N as follows:
uðPÞ, vecT P1ð Þ vecT P2ð Þ � � � vecT PNð Þ
� �T ¼ vec P1 P2 � � � PN½ �ð Þ:
We use diag A1;A2; . . . ;Asf g to denote a diagonal matrix whose diagonal elements are Ai; i ¼ 1;2; . . . ; s. Finally, we let rð�Þ and
qð�Þ represent, respectively, the spectrum and spectral radius of a matrix or a linear operator.

The positive operator introduced below takes very important functions in this paper.

Definition 1. Let W be some finite-dimensional real vector space, ordered by a closed, solid, pointed convex cone Wþ. A
linear operator L :W !W is called positive (denoted by L > 0) if L Wþð Þ � Wþ.
Lemma 1 [17]. Let L :W !W be positive and qðLÞ be the spectral radius of L, namely, qðLÞ ¼maxfjrðLÞjg. Then the following
statements are equivalent:

1. qðLÞ < 1;
2. There exists an X > 0 (X < 0 means that X 2 intWþ) such that LðXÞ � X < 0;
3. For any Y > 0, there exists an X > 0 such that LðXÞ � X ¼ �Y.

Finally, we introduce the standard concept of asymptotic exponential convergence rate of linear iteration.

Definition 2. Consider the following iteration
xðkþ 1Þ ¼ MxðkÞ þ g; g 2 Rn; ð1Þ
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where M and g are respectively constant matrix and vector. Then the number RðMÞ ¼ � ln qðMÞ is called the asymptotic
exponential convergence rate of the iteration in (1).

Basically, the above definition means that the smaller the spectral radius qðMÞ, the larger the asymptotic exponential con-
vergence rate is, namely, iteration (1) converges faster.

3. Discrete-time Lyapunov equation

We consider the discrete-time stochastic system described by Itô difference equation with Markovian jumps:
xðkþ 1Þ ¼ A0ðhðkÞÞxðkÞ þ
Xr

s¼1

AsðhðkÞÞxðkÞxsðkÞ; ð2Þ
where xðkÞ 2 Rn is the system state, xsðkÞ 2 R; s 2 f1;2; . . . ; rg are sequences of real random variables defined on a complete
probability space fX;F ;lg and are independent wide sense stationary, second-order processes with EfxiðkÞg ¼ 0 and
EfxiðtÞxjðsÞg ¼ dij; i; j 2 f1; rg, and fhðkÞ; k P 0g is a discrete-time homogeneous Markovian chain with finite state space
N , transition probability matrix P ¼ ½pij�N�N and initial distribution p ¼ ðp1;p2; . . . ;pNÞ.

Definition 3. The discrete-time Itô stochastic linear system (2) is said to be mean square stable if
lim
k!1

E kxðk; h0; x0Þk2
n o

¼ 0; 8x0 2 Rn:
Moreover, we say shortly that A ¼ ðA0;A1; . . . ;ArÞ is mean square stable.
Regarding mean square stability of system (2), the following result is standard.

Lemma 2. The discrete-time Itô stochastic linear system (2) is mean square stable if and only if the discrete-time stochastic
Lyapunov matrix equation
Xr

s¼0

AT
si

XN

j¼1

pijPj

 !
Asi � Pi ¼ �Q i; i 2 N ; ð3Þ
has a unique solution P ¼ ðP1; P2; . . . ; PNÞ 2 Rn�n
þ for any given Q ¼ ðQ 1;Q 2; . . . ;Q NÞ 2 Rn�n

þ .
It is thus important to consider numerical solutions of the matrix equation (3). However, a few result is available in the

literature for this problem. For example, according to Remark 1 in [22], the equations in (3) are a special case of the coupled
Sylvester matrix equations studied in [6] by introducing auxiliary variables. Therefore, the number of variables would be
doubled, which increases the computational cost. Recently, we proposed in [28] alternative gradient based iterative solutions
of general coupled matrix equations which include (3) as special cases. However, since the method in [28] does not take full
advantage of the special structures of Eq. (3), the convergence performances is not satisfactory as can be seen in our numer-
ical examples given in Section 5. In this section, we will present two classes of iterative algorithms for solving these equa-
tions by taking full usage of the special structures of them.

3.1. Direct iteration

In this subsection, we present a natural and simple iterative algorithm for solving Eq. (3).

Theorem 1. Assume that the discrete-time Itô stochastic linear system (2) is mean square stable. Let P	 ¼ P	1; P
	
2; . . . ; P	N

� �
2 Rn�n

þ
be the unique solution of Eq. (3). Define iteration
Piðkþ 1Þ ¼
Xr

s¼0

AT
si

XN

j¼1

pijPjðkÞ
 !

Asi þ Q i; i 2 N : ð4Þ
Then fPðkÞg1k¼0 converges and limk!1PðkÞ ¼ P	.
Proof. Define operator J : Rn�n !Rn�n as
J ¼ ðJ 1;J 2; . . . ;J NÞ; J iðPÞ ¼
Xr

s¼1

AT
si

XN

j¼1

pijPj

 !
Asi; i 2 N :
Obviously, J is a linear positive operator. Then iteration (4) can be written as
Pðkþ 1Þ ¼ J ðPðkÞÞ þ Q ; ð5Þ
where Q ¼ ðQ1;Q2; . . . ;Q NÞ. Because P	 is the unique positive definite solution of Eq. (3), so P	 ¼ J ðP	Þ þ Q ; Q > 0. By Lemma
1, we know that qðJ Þ < 1. Then iteration (5) converges for any initial condition Pð0Þ 2 Cn�n. Set limk!1PðkÞ ¼ Py. Taking limit
on both sides of (5) and using P	 ¼ J ðP	Þ þ Q produce
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Py ¼ J Py
� �

þ Q ¼ J Py
� �

þ P	 � J ðP	Þ:
Let DP ¼ Py � P	. Then it follows that DP ¼ J ðDPÞ. Because qðJ Þ < 1, so DP ¼ J ðDPÞ has a unique solution 0, that is, Py ¼ P	.
The proof is completed. h

Regarding the convergence rate of iteration (4), we have the following result.

Proposition 1. The asymptotic exponential convergence rate of iteration (4) is � lnqðJÞ, where
J ¼
Xr

s¼0

� s

 !
P� In2ð Þ; ð6Þ
with
� s ¼ diag AT
s1 � AT

s1;A
T
s2 � AT

s2; . . . ;AT
sN � AT

sN

n o
:

Proof. Taking uð�Þ on both sides of (4) and denoting pðkÞ ¼ uðPðkÞÞ gives
pðkþ 1Þ ¼ JpðkÞ þuðQÞ;
where J ¼ ½Jij�Nn2�Nn2 with JT
ij ¼

Pr
s¼0pijAsi � Asi 2 Rn2�n2

. Direct manipulation shows that J can be simplified as (6). The result
then follows from Definition 2. h
3.2. Implicit iteration

Notice that we can rewrite the Lyapunov matrix equation (3) as follows:
ffiffiffiffiffiffi
pii
p

AT
0i

� �
Pi

ffiffiffiffiffiffi
pii
p

A0ið Þ � ð1þ ciÞPi ¼ �AT
0i

XN

j¼1;j–i

pijPj

 !
A0i � ciPi �

Xr

s¼1

AT
si

XN

j¼1

pijPj

 !
Asi � Q i; i 2 N :
where ci; i 2 N , are any scalars. Based on this expression and motivated by the work [22], we can present the following im-
plicit iteration for solving Eq. (3):
ffiffiffiffiffiffi
pii
p

AT
0i

� �
Piðkþ1Þ

ffiffiffiffiffiffi
pii
p

A0ið Þ � ð1þ ciÞPiðkþ 1Þ ¼ �AT
0i

XN

j¼1;j–i

pijPjðkÞ
 !

A0i � ciPiðkÞ �
Xr

s¼1

AT
si

XN

j¼1

pijPjðkÞ
 !

Asi �Q i; i 2 N :

ð7Þ

Notice that at every step of the above iteration, N normal discrete-time Lyapunov equations in the form of
ATXA� X ¼ �Z; Z > 0 ð8Þ
are solved. Fortunately, there are many numerically stable algorithms for solving such kind of equations. One of the most
effective algorithms is the well-known Hessenberg-Schur form based approach [10] which has been imbedded in the Matlab
function dyap.

Regarding the convergence of iteration (7), we can prove the following result.

Theorem 2. If the discrete-time Itô stochastic linear system (2) is mean square stable, then for any ci P 0; i 2 N , the iteration in
(7) converges to the unique solution P	 ¼ P	1; P

	
2; . . . ; P	N

� �
2 Rn�n

þ of the discrete-time Lyapunov equation (3) for any initial
condition Pð0Þ ¼ ðP1ð0Þ; P2ð0Þ; . . . ; PNð0ÞÞ.
Proof. Define the operator R as
RðPÞ ¼ ðR1ðPÞ;R2ðPÞ; . . . ;RNðPÞÞ;

RiðPÞ ¼
ffiffiffiffiffiffi
pii
p

AT
0i

� �
Pi

ffiffiffiffiffiffi
pii
p

A0ið Þ � ð1þ ciÞPi; i 2 N ;
and the operator S as
SðPÞ ¼ ðS1ðPÞ;S2ðPÞ; . . . ;SNðPÞÞ;

SiðPÞ ¼ AT
0i

XN

j¼1;j–i

pijPj

 !
A0i þ

Xr

s¼1

AT
si

XN

j¼1

pijPj

 !
Asi þ ciPi; i 2 N ;
where P ¼ ðP1; P2; . . . ; PNÞ. Then the discrete-time stochastic Lyapunov matrix equation (3) can be written as
RðPÞ þ SðPÞ ¼ �Q ; ð9Þ
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where Q ¼ ðQ1;Q2; . . . ;Q NÞ. Or equivalently,
RðPÞ ¼ �SðPÞ � Q,� X:
As the discrete-time Itô stochastic linear system (2) is mean square stable and Q > 0, we know that the discrete-time stochas-
tic Lyapunov matrix equation (3) has a unique solution P > 0, which implies that X > 0 as S is a positive operator. That is to say,
RiðPÞ ¼
ffiffiffiffiffiffi
pii
p

AT
0i

� �
Pi

ffiffiffiffiffiffi
pii
p

A0ið Þ � ð1þ ciÞPi ¼ �Xi < 0; 8i 2 N :
By Lyapunov stability theorem, the above equations indicate that
ffiffiffiffiffiffiffiffiffiffi

pii
ð1þciÞ

q
A0i; i 2 N , are Schur stable. Hence
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pii

1þ ci

r
A0i

	 

� C�;
and it follows that
rðRiÞ ¼ kl� 1 : k;l 2 r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pii

1þ ci

r
A0i

	 
� �
� C�:
By observing the special structure of the operator R, we conclude that
rðRÞ ¼
[N
i¼1

rðRiÞ � C�:
Hence R is invertible and we can rewrite (9) as RðI þR�1SÞðPÞ ¼ �Q , or
ðI � T ÞðPÞ ¼ R�1ð�QÞ; ð10Þ
where I is the identity operator and T ¼ �R�1S. Let
R�1ð�QÞ ¼ �R�1ðQÞ ¼ Y ¼ ðY1;Y2; . . . ; YNÞ; ð11Þ
namely,
RiðYÞ ¼
ffiffiffiffiffiffi
pii
p

AT
0i

� �
Yi

ffiffiffiffiffiffi
pii
p

A0ið Þ � ð1þ ciÞYi ¼ �Q i < 0; 8i 2 N :
As q
ffiffiffiffiffiffiffi
pii

1þci

q
A0i

� �
< 1, we get from the well-known Lyapunov stability theorem that Yi > 0, namely, Y > 0. Therefore, by Def-

inition 1, it follows from (11) that�R�1 is a positive operator. As S is also a positive operator, we know that T ¼ �R�1Smust
be a positive operator too. Rearrange (10) as
T ðPÞ � P ¼ �Y :
As P > 0 and Y > 0, we get from Lemma 1 that
qðT Þ < 1: ð12Þ
Now, by using the operators R and S, the iteration in (7) can be rewritten as
RðPðkþ 1ÞÞ ¼ �SðPðkÞÞ � Q ; Pð0Þ 2 Cn�n;
namely,
Pðkþ 1Þ ¼ �R�1SðPðkÞÞ � R�1ðQÞ ¼ T ðPðkÞÞ � R�1ðQÞ:
The convergence of the algorithm then follows from (12). Finally, when it converges to P	, then P	 must satisfy
RðP	Þ ¼ �SðP	Þ � Q ;
which indicates that P	 is the unique solution of Eq. (3). The proof is completed. h

A couple of remarks regarding the implicit iteration in (7) are given in order.

Remark 1. Similar to iteration (7), we can also construct the following iteration
ffiffiffiffiffiffi
pii
p

AT
mi

� �
Piðkþ 1Þ

ffiffiffiffiffiffi
pii
p

Amið Þ � ð1þ ciÞPiðkþ 1Þ ¼ �AT
mi

XN

j¼1;j–i

pijPjðkÞ
 !

Ami � ciPiðkÞ �
Xr

s¼0;s–m

AT
si

XN

j¼1

pijPjðkÞ
 !

Asi � Qi;
where i 2 N ; 8m 2 f1;2; . . . ; rg. In this case, Theorem 2 is also true.
Remark 2. Numerical experience indicates that implicit iteration (7) converges faster than the direct iteration (4) in most
cases. However, since the accuracy of implicit iteration (7) relies heavily on the accuracy of solutions of the discrete-time
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Lyapunov equation (8), direct iteration (4) can yield more accuracy solutions than implicit iteration (7). These characteristics
can be observed from the numerical examples in Section 5.
Remark 3. Though the free parameters ci; i 2 N , can be arbitrarily chosen in iteration (7), different values of them will lead
to different convergence rate of the iteration. Numerical experience shows that, under the condition of mean square stability
of the discrete-time Itô stochastic linear system (2), the smaller the values of ci; i 2 N , the faster the iteration converges. For
this reason, we can simply choose
ci ¼ 0; 8i 2 N :
Remark 4. In Theorem 2, the condition that the discrete-time Itô stochastic linear system (2) is mean square stable is suf-
ficient but not necessary for the convergence of iteration (7). For example, we assume N ¼ 1; s ¼ 1 and n ¼ 1. Then the sto-
chastic Lyapunov equation (3) becomes
AT
0PA0 þ AT

1PA1 � P ¼ �Q ;
where A1 – 0. The iteration in (7) then reads
Pðkþ 1Þ ¼ � cþ A2
1

A2
0 � 1� c

PðkÞ � 1

A2
0 � 1� c

Q ; c P 0;
which converges if and only if
q
A2

1 þ c
A2

0 � 1� c

 !
¼ A2

1 þ c
A2

0 � 1� c












 < 1: ð13Þ
On the other hand, the discrete-time Itô stochastic linear system (2) is mean square stable if and only if r A2
0 þ A2

1

� �
� C�, i.e.
A2
0 þ A2

1 < 1: ð14Þ
Obviously, (14) implies (13) but the converse is not true.
Motivated by Remark 4, we give the following necessary and sufficient condition for the convergence of iteration (7). To

this end, we first denote
M ¼ �diagfM1;M2; . . . ;MNg;
with Mi ¼ piiA
T
0i � AT

0i � ð1þ ciÞIn2 ; i 2 N and
T ¼ M�1W; ð15Þ
where W ¼ ½Wij�Nn2�Nn2 , with
Wii ¼ pii

Xr

s¼1

AT
si � AT

si þ ciIn2 ;

Wij ¼ pij

Xr

s¼0

AT
si � AT

si; 8i – j; i; j 2 N :
Since at each step in iteration (7), a Lyapunov equation in the form of (8) should be solved, we should find conditions to guar-
antee that these Lyapunov equations have unique solutions. A necessary and sufficient condition is that Mi is nonsingular, or
equivalently, the following assumption is true:

Assumption 1. The matrix M is invertible.

The above assumption is not restrictive since we can always find ci; i 2 N , such that it is satisfied.

Theorem 3. Assume that the discrete-time stochastic Lyapunov equation (3) has a unique solution P	 ¼ P	1; P
	
2; . . . ; P	N

� �
2 Rn�n

þ .
Then for any initial condition Pð0Þ ¼ ðP1ð0Þ; P2ð0Þ; . . . ; PNð0ÞÞ 2 Cn�n, the iteration in (7) converges to P	 if and only if qðTÞ < 1.
Moreover, the asymptotic exponential convergence rate of iteration (7) is � lnqðTÞ.
Proof. Taking vecð�Þ on both sides of (7) and using the fact that Mi; i 2 N , are nonsingular, we get
piðkþ 1Þ ¼ �M�1
i

XN

j¼1;j–i

pij AT
0i � A0i

� �
pjðkÞ � ciM

�1
i pi �M�1

i

Xr

s¼1

XN

j¼1

pij AT
si � Asi

� �
pðkÞ �M�1

i qi;
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where piðkÞ ¼ vecðPiðkÞÞ and qi ¼ vecðQiÞ. The above iterations can be written in the following compact form
pðkþ 1Þ ¼ M�1WpðkÞ þM�1q ¼ TpðkÞ þM�1q; ð16Þ
by denoting pðkÞ ¼ uðPðkÞÞ and q ¼ uðQÞ. Clearly, the above iteration converges if and only if qðTÞ < 1. Moreover, if it con-
verges to a constant denoted by Py, then Py must satisfy Eq. (3). The proof is finished by our assumption that Eq. (3) has a
unique solution. h

In [22], the authors considered the following matrix equation
AT
i

XN

j¼1

pijPj

 !
Ai � Pi þ Si ¼ 0; i 2 N ; ð17Þ
where Si P 0; i 2 N , are given matrices, associated with the discrete-time Markovian jump linear system
xðkþ 1Þ ¼ AðhðkÞÞxðkÞ; ð18Þ
where fhðkÞ; k P 0g is a discrete-time homogeneous Markovian chain as defined for system (2) and Ai ¼ AðhðkÞ ¼ iÞ. The fol-
lowing implicit iteration was proposed there to obtain numerical solution of Eq. (17):
piiA
T
i Piðkþ 1ÞAi � Piðkþ 1Þ þ AT

i

XN

j¼1;j–i

pijPjðkÞ
 !

Ai þ Si ¼ 0; i 2 N : ð19Þ
We notice that the above iteration is a special case of (7) by setting s ¼ 0 and ci ¼ 0; i 2 N . Then based on Theorem 2, the
following corollary can be obtained immediately regarding the convergence of iteration (19).

Corollary 1. If the discrete-time Markovian jump linear system (18) is mean square stable, then the iteration in (19) converges to
the unique solution P	 ¼ P	1; P

	
2; . . . ; P	N

� �
2 Rn�n

þ of Eq. (17) for any initial condition Pð0Þ ¼ ðP1ð0Þ; P2ð0Þ; . . . ; PNð0ÞÞ 2 Cn�n.

To judge the convergence of iteration (19), the main results in [22] (namely, Theorem 1) which can be regarded as a spe-
cial case of Theorem 3 relies on eigenvalues of an auxiliary matrix of dimensions n2N. Different from that result, our result in
Corollary 1 is very neat and simple.

4. Continuous-time Lyapunov equation

In this section we consider the Itô differential equation with Markovian jumps,
dxðtÞ ¼ A0ðhðtÞÞxðtÞdt þ
Xr

k¼1

AkðhðtÞÞxðtÞdxkðtÞ; ð20Þ
where xðtÞ 2 Rn is the system state, xkðtÞ 2 R; k 2 f1; rg are sequences of real random variables defined on a complete prob-
ability space fX;F ;lg and are independent wide sense stationary, second-order processes with EfxiðtÞg ¼ 0 and
EfxiðtÞxjðsÞg ¼ dij; i; j 2 f1; rg, and fhðtÞ; t P 0g is a continuous-time discrete-state Markovian process taking value in finite
set N with transition probability rate matrix P ¼ ½pij�N�N satisfying
pij P 0; i – j;

pij < 0; i ¼ j;PN
j¼1

pij ¼ 0:

8>>><
>>>:
Let the initial condition for the system (20) be xð0Þ ¼ x0 and hð0Þ ¼ h0.

Definition 4. The continuous-time Markovian jump Itô stochastic system (20) is asymptotically mean square stable (AMSS)
if for any x0 2 Rn and h0 2 N , there holds
lim
t!1

EfkxðtÞk2g ¼ 0;
where xðtÞ ¼ xðt; x0; h0Þ is a sample solution of the system.
It is well known that the mean square stability of the continuous-time Markovian jump Itô stochastic system (20) is clo-

sely related with the following continuous-time stochastic Lyapunov equation
AT
0iPi þ PiA0i þ

Xr

k¼1

AT
kiPiAki þ

XN

j¼1

pijPj ¼ �Qi; i 2 N ; ð21Þ
as the following lemma shows.
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Lemma 3 [27]. The continuous-time Markovian jump Itô stochastic system (20) is mean square stable if and only if the
continuous-time stochastic Lyapunov equation (21) has a unique solution P ¼ ðP1; P2; . . . ; PNÞ 2 Rn�n

þ for any given Q ¼
ðQ1;Q2; . . . ;QNÞ 2 Rn�n

þ .

Lemma 3 presents an elegant characterization for the mean square stability of the continuous-time Markovian jump Itô
stochastic system (20) via solutions of the stochastic Lyapunov equation (21). However, similar to the discrete-time case,
solving such equation is not an easy task, especially, if the dimensions of the system and/or the number of r and N are large
enough. In this section, we will present iterative algorithm to solve this class of equations.

4.1. Direct iteration based on transformation

To present our first result, we need an auxiliary result. Let 0 < ai R r A0i þ pii
2 In

� �
; 8i 2 N , be a set of scalars and
A0i ¼ aiIn þ A0i þ
pii

2
In

� �
Ti; Aki ¼

ffiffiffiffiffiffiffi
2ai

p
AkiTi; Bi ¼

ffiffiffiffiffiffiffi
2ai

p
Ti;
where
Ti ¼ aiIn �
pii

2
In � A0i

� ��1
; 8i 2 N :
Define operator H : Rn�n !Rn�n as
HðPÞ ¼ H1ðPÞ;H2ðPÞ; . . . ;HNðPÞð Þ;

HiðPÞ ¼
Xr

s¼0

AT
siPiAsi þ BT

i

XN

j¼1;j–i

pijPj

 !
Bi; 8i 2 N ;

ð22Þ
where P ¼ ðP1; P2; . . . ; PNÞ.

Lemma 4. P ¼ P1; P2; . . . ; PNð Þ 2 Rn�n
þ is a solution of Eq. (21) if and only if it is the solution of equation
P ¼ HðPÞ þ Q; ð23Þ
where
Q ¼ BT
1Q 1B1;BT

2Q 2B2; . . . ;BT
NQ NBN

� �
: ð24Þ
Proof. Set
C0i ¼ A0i þ
pii

2
In; Q 0i ¼

XN

j¼1;j–i

pijPj þ Q i:
Let P be a solution of (21). Then for any i 2 N ,
ðaiIn � C0iÞTPiðaiIn � C0iÞ ¼ a2
i Pi � aiC

T
0iPi � aiPiC0i þ CT

0iPiC0i

¼ a2
i Pi þ CT

0iPiC0i þ aiPiC0i þ aiC
T
0iPi � ai PiC0i þ CT

0iPi

� �
þ ai Q 0i þ

Xr

s¼1

AT
siPiAsi

 !

¼ ðaiIn þ C0iÞTPiðaiIn þ C0iÞ þ 2ai Q 0i þ
Xr

s¼1

AT
siPiAsi

 !
:

Since ai R r A0i þ pii
2 In

� �
; 8i 2 N , we get from the above equation that
Pi ¼ ðaiI � C0iÞ�T aiI þ C0ið ÞTPi aiI þ C0ið ÞðaiI � C0iÞ�1 þ 2aiðaiI � C0iÞ�T Q 0i þ
Xr

s¼1

AT
siPiAsi

 !
ðaiI � C0iÞ�1

¼ AT
0iPiA0i þ

Xr

s¼1

AT
siPiAsi þ BT

i

XN

j¼1;j–i

pijPj

 !
Bi þ BT

i Q iBi ¼ HiðPÞ þ BT
i Q iBi;
which implies that P also satisfies (23). Since the above process is reversible, the proof is completed. h

Based on the above lemma, we can present the following result regarding iterative solution of Eq. (21).

Theorem 4. Assume that the continuous-time Markovian jump Itô stochastic system (20) is mean square stable and
P	 ¼ P	1; P

	
2; . . . ; P	N

� �
2 Rn�n

þ is the unique solution of Eq. (21). Let
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Pðkþ 1Þ ¼ HðPðkÞÞ þ Q; Pð0Þ 2 Cn�n; ð25Þ
where H and Q are defined in (22) and (24), respectively. Then fPðkÞg1k¼0 converges and limk!1PðkÞ ¼ P	.
Proof. If P	 2 Rn�n
þ is the solution of Eq. (21). Then it follows from Lemma 4 that P	 satisfies
HðP	Þ � P	 ¼ �Q:
Notice that H is a positive linear operator. Then it follows from Lemma 1 that
qðHÞ < 1:
Then similar to the proof of Theorem 1, we can show that the iteration in (25) converges to the unique solution P	. The proof
is finished. h

Obviously, when ai; i 2 N , take different values, the asymptotic exponential convergence rate of iteration (25) is differ-
ent. One may ask whether there exist ai; i 2 N , such that the asymptotic exponential convergence rate of the iteration is
maximized. The following result answers this question partially.

Proposition 2. There exists at least a set of ai; i 2 N , such that the asymptotic exponential convergence rate of the iteration in
(25) is maximized.
Proof. By taking uð�Þ on both sides of (25), we obtain
pðkþ 1Þ ¼ HpðkÞ þ Bq;
where pðkÞ ¼ uðPðkÞÞ; q ¼ uðQÞ
H ¼

Pr
s¼0
As1 �As1 p12B1 � B1 � � � p1NB1 � B1

p21B2 � B2
Pr
s¼0
As2 �As2 � � � p2NB2 � B2

..

. ..
. . .

. ..
.

pN1BN � BN pN2BN � BN � � �
Pr
s¼0
AsN �AsN

2
66666666664

3
77777777775
; ð26Þ
and
B ¼ diag B1 � B1;B2 � B2; . . . ;BN � BNð Þ:
Hence, clearly, the asymptotic exponential convergence rate of the iteration is � lnðqðHÞÞ. Denote
EiðAÞ ¼ A0i þ
pii

2
In

� �
� In þ In � A0i þ

pii

2
In

� �
þ
Xr

s¼1

Asi � Asi:
Then, for any i 2 N , we can compute
Xr

s¼0

Asi �Asi ¼ A0i �A0i þ
Xr

k¼1

Aki �Aki ¼ ðaiIn þ C0iÞðaiIn � C0iÞ�1 � ðaiIn þ C0iÞðaiIn � C0iÞ�1

þ
Xr

k¼1

ffiffiffiffiffiffiffi
2ai

p
Akiða0In � C0iÞ�1 �

ffiffiffiffiffiffiffi
2ai

p
Akiða0In � C0iÞ�1

¼ ðaiIn þ C0iÞ � ðaiIn þ C0iÞ þ 2ai

Xr

s¼1

Asi � Asi

 !
ðaiIn � C0iÞ�1 � ðaiIn � C0iÞ�1

¼ ððaiIn þ C0iÞ � ðaiIn þ C0iÞ þ 2aiðEiðAÞ � C0i � In � In � C0iÞÞ � ðaiIn � C0iÞ�1 � ðaiIn � C0iÞ�1

¼ a2
i In2 � aiC0i � In � aiIn � C0i þ C0i � C0i þ 2aiEiðAÞ

� �
� ðaiIn � C0iÞ�1 � ðaiIn � C0iÞ�1

¼ ððaiIn � C0iÞ � ðaiIn � C0iÞ þ 2aiEiðAÞÞðaiIn � C0iÞ�1 � ðaiIn � C0iÞ�1

¼ In2 þ 2aiEiðAÞðaiIn � C0iÞ�1 � ðaiIn � C0iÞ�1
: ð27Þ
With this, we clearly see that
lim
ai!0þ

Xr

s¼0

Asi �Asi ¼ In2 ; 8i 2 N : ð28Þ
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On the other hand, we know that there exists a set of scalars bi 2 ð0;1Þ; 8i 2 N , such that 1
ai

C0i

��� ��� < 1
2 is satisfied for all

ai > bi; 8i 2 N . Since (see, for example, [31])� �

In �

C0i

ai

	 
�1����
���� 6 1

1� k 1
ai

C0ik
; 8i 2 N ;
we can compute
k2aiEiðAÞðaiIn � C0iÞ�1 � ðaiIn � C0iÞ�1k ¼ 2
ai
E iðAÞ In �

C0i

ai

	 
�1

� In �
C0i

ai

	 
�1
�����

����� 6 2
ai
kEiðAÞk In �

C0i

ai

	 
�1
�����

�����
2

6
2
ai
kEiðAÞk

1
1� k 1

ai
C0ik

 !2

6
8
ai
kEiðAÞk; 8i 2 N :
Therefore, we get
lim
ai!1

2aiEiðAÞðaiIn � C0iÞ�1 � ðaiIn � C0iÞ�1 ¼ 0; 8i 2 N :
Hence, in view of (27), we conclude that
lim
ai!1

Xr

s¼0

Asi �Asi ¼ In2 ; 8i 2 N : ð29Þ
On the other hand, we can obtain
Bi � Bi ¼
ffiffiffiffiffiffiffi
2ai

p
ðaiIn � C0iÞ�1 �

ffiffiffiffiffiffiffi
2ai

p
ðaiIn � C0iÞ�1 ¼ 2aiðaiIn � C0iÞ�1 � ðaiIn � C0iÞ�1

; 8i 2 N :
Then similar to (28) and (29), we are able to show
lim
ai!0þ

Bi � Bi ¼ lim
ai!1

Bi � Bi ¼ 0; 8i 2 N : ð30Þ
Combining (28)–(30) gives
lim
ai!0þ

H ¼ lim
ai!1

H ¼ In2N ; 8i 2 N :
Since qðHÞ < 1 is true for all ai > 0; 8i 2 N , there exists at least one a	i > 0; 8i 2 N , such that qðHÞ is minimized, namely, the
asymptotic exponential convergence rates of iteration (25) is maximized. The proof is finished. h

However, how to compute the optimal scalars a	i ; i 2 N , is not clear at present and requires a further study.

4.2. Implicit iteration

In the above subsection, an iterative algorithm is proposed by using an auxiliary transformation, which may require addi-
tional computation. In this subsection, similar to the discrete-time case, we propose an alterative iterative algorithm without
transformation.

We begin our development by noting that the stochastic Lyapunov equation (21) can be written as
AT
i Pi þ PiAi ¼ �

Xr

s¼1

AT
siPiAsi �

XN

j¼1;j–i

pijPj � biPi � Q i; i 2 N ;
where
Ai ¼ A0i þ
pii

2
In �

bi

2
In:
Based on this presentation, we can construct the implicit iteration:
AT
i Piðkþ 1Þ þ Piðkþ 1ÞAi ¼ �

Xr

s¼1

AT
siPiðkÞAsi �

XN

j¼1;j–i

pijPjðkÞ � biPiðkÞ � Q i; i 2 N : ð31Þ
Notice that at every step of the iteration, N standard continuous-time Lyapunov equations in the form of
ATX þ XA ¼ �Z; Z > 0 ð32Þ
should be solved. Fortunately, there are many numerically stable algorithms for solving such equations. One of the most
effective methods is the well-known Hessenberg-Schur form based approach ([9]) which has been imbedded in the Matlab
function lyap.

Regarding the convergence of the algorithm (31), we have the following result.



Z.-Y. Li et al. / Applied Mathematics and Computation 217 (2011) 8179–8195 8189
Theorem 5. If the continuous-time Markovian jump Itô stochastic system (20) is mean square stable, then for any bi P 0; i 2 N ,
the iteration in (31) converges to the unique solution P	 ¼ P	1; P

	
2; . . . ; P	N

� �
2 Rn�n

þ of the continuous-time stochastic Lyapunov
matrix equation (21) for any initial condition Pð0Þ ¼ ðP1ð0Þ; P2ð0Þ; . . . ; PNð0ÞÞ 2 Cn�n.
Proof. Define the operator R as
RðPÞ ¼ ðR1ðPÞ;R2ðPÞ; . . . ;RNðPÞÞ;
RiðPÞ ¼ AT

i Pi þ PiAi; i 2 N ;
and the operator S as
SðPÞ ¼ ðS1ðPÞ;S2ðPÞ; . . . ;SNðPÞÞ;

SiðPÞ ¼
Xr

s¼1

AT
siPiAsi þ

XN

j¼1;j–i

pijPj þ biPi; i 2 N ;
where P ¼ ðP; P; . . . ; PNÞ. We notice that SðPÞ is a positive operator. Then the rest of the proof is similar to the proof of The-
orem 2 and is hence omitted for brevity. h

The following two remarks for iteration (31) parallel those in Remarks 3 and 4.

Remark 5. Under the condition of mean square stability of the continuous-time Markovian jump Itô stochastic system (20),
numerical experiences show that the smaller the values of bi; i 2 N , the faster the iteration in (31) converges. Hence, similar
to the discrete-time case, we can choose bi ¼ 0; i 2 N .
Remark 6. Similar to the discrete-time case, the mean square stability of system (20) is only a sufficient condition for the
convergence of the iteration in (31). An illustrative example can be constructed as follows: Let N ¼ 1; n ¼ 1 and r ¼ 1. Then
Eq. (21) becomes
AT
0P þ PA0 ¼ �AT

1PA1 � Q ;
where A1 – 0. The iteration in (31) can then be written as
Pðkþ 1Þ ¼ �A2
1 � b

2A0 � b
PðkÞ � 1

2A0 � b
Q ; b P 0;
which converges if and only if
q
�A2

1 � b
2A0 � b

 !
¼ A2

1 þ b
2A0 � b












 < 1: ð33Þ
On the other hand, the associated continuous-time Markovian jump Itô stochastic system (20) is mean square stable if and
only if
2A0 þ A2
1 < 0: ð34Þ
Inequality (34) implies (33) but the converse is not true. For example, if we choose b ¼ 0 and A0 ¼ A2
1, then (33) is satisfied

but (34) is not satisfied.
Based on Remark 6, we can also generalize Theorem 3 to iteration (31) by providing necessary and sufficient condition for

its convergence. Similarly, we let
E ¼ �diagfE1; E2; . . . ; ENg;
with Ei ¼ In � A0i þ A0i � In þ ðpii � biÞIn2 , and denote
G ¼ E�1V ; ð35Þ
where
V ¼

V11 p12In2 � � � p1NIn2

p21In2 V22 � � � p2NIn2

..

. ..
. . .

. ..
.

pN1In2 � � � pN;N�1In2 VNN

2
66664

3
77775;
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with Vii ¼
Pr

k¼1Aki � Aki þ biIn2 ; i 2 N . Similar to the discrete-time case, we should assume that In2 �Ai þAi � In2 ¼ E is non-
singular. The above assumption is again not restrictive since we can always find bi; i 2 N , such that it is satisfied. We have
the following theorem, its proof is similar to that of Theorem 3 and hence omitted.

Theorem 6. Assume that the continuous-time Markovian jump Itô stochastic system (21) has a unique solution P	 ¼
P	1; P

	
2; . . . ; P	N

� �
2 Rn�n

þ . Then for any initial condition Pð0Þ ¼ ðP1ð0Þ; P2ð0Þ; . . . ; PNð0ÞÞ 2 Cn�n, the iteration in (31) converges to P	

if and only if qðGÞ < 1. Moreover, the asymptotic exponential convergence rate of iteration (31) is � ln qðGÞ.
5. Numerical Examples

In this section, we work out two numerical examples to validate the effectiveness of the proposed algorithms.

Example 1. Consider the discrete-time Lyapunov equation (3) with N ¼ 2; r ¼ 1; Q1 ¼ Q2 ¼ I4, and
P ¼
0:3 0:7
0:8 0:2

� �
:

The coefficient matrices Aij; i ¼ 0;1; j ¼ 1;2 are randomly generated by Matlab:
A01 ¼

�0:2854 �0:0409 0:3464 0:00320
�0:4621 0:3521 0:09170 �0:0220
�0:2135 �0:3569 0:4254 �0:4799
�0:0975 0:4726 �0:4324 0:0353

2
6664

3
7775;

A02 ¼

�0:0240 �0:0354 0:2295 �0:0041
0:1039 0:2905 0:1248 �0:3693
�0:3534 0:2842 �0:4000 �0:2181
0:0337 �0:0222 �0:2950 �0:1377

2
6664

3
7775;

A11 ¼

0:2663 0:2283 �0:1163 0:2558
�0:1242 �0:2103 �0:0799 �0:0284
�0:1655 0:0055 0:2577 0:1995
�0:0447 �0:0318 0:1742 �0:2439

2
6664

3
7775;

A12 ¼

�0:4347 0:4695 0:0237 0:3432
�0:1249 �0:1579 �0:3366 0:3062
�0:1265 �0:2473 �0:0136 0:3578
�0:0160 0:0849 �0:0039 0:1098

2
6664

3
7775:
We first use the implicit iteration (7) to produce approximate solutions of Eq. (3) with different values of ci; i ¼ 1;2. The
results are recorded in Fig. 1 where the y-axis corresponds to the iteration error logðDðkÞÞ with
0 20 40 60 80 100
−35

−30

−25

−20

−15

−10

−5

0

5

steps

lo
g(

Δ(
k)

)

γ1=γ2=0

γ1=γ2=0.5

γ1=γ2=0.8

Fig. 1. Convergence performance of implicit iteration (7) for different values of ci; i 2 N .
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DðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼0

Xr

s¼0
AT

si

XN

j¼1
pijPjðkÞ

� �
Asi � PiðkÞ þ Q i

��� ���2

F

r
:

From the figure we see that different values of ci; i ¼ 1;2, lead to different convergence rates of the iteration. Especially, we
see that the convergence rate of the iteration is maximized if c1 ¼ c2 ¼ 0. Our observation has been confirmed by a couple of
numerical examples that are not recorded in this paper. For this reason, we can simply choose ci ¼ 0 in iteration (7) as Re-
mark 2 states. For c1 ¼ c2 ¼ 0, the iteration error is kDð40Þk ¼ 4:2620� 10�15 and the resulting approximate solution is given
by
P1ð40Þ ¼

1:7520 �0:0374 �0:3924 0:2664

�0:0374 2:2980 �0:8302 0:6242

�0:3924 �0:8302 2:2450 �0:4910

0:2664 0:6242 �0:4910 1:8180

2
66664

3
77775;

P2ð40Þ ¼

1:6970 �0:4055 0:3677 �0:3606

�0:4055 1:8790 �0:0550 �0:1827

0:3677 �0:0550 1:8370 �0:0578

�0:3606 �0:1827 �0:0578 1:8440

2
66664

3
77775:
Next we compare our proposed algorithms (4) and (7) to the gradient based iterative algorithm presented in [28]. Here we
choose ci ¼ 0; i ¼ 1;2 in iteration (7) and the step size in the gradient based iteration of [28] is chosen as the optimal one.
The results are recorded in Fig. 2. We can observe the following two facts from the figure: 1. The implicit iteration in (7) con-
verges faster than the direct iteration in (4) and the gradient based iteration in [28]; 2. The accuracy that the implicit iter-
ation in (7) can achieve is better than that of the direct iteration in (4). This is because the accuracy of the implicit iteration
relies on the accuracy of solutions of the normal discrete-time Lyapunov equation in the form of (8). Based on these two
facts, we suggest to use the implicit iteration in (7) if the requirement on accuracy is not so demanding. Otherwise, we
should use the direct iteration in (4).

Example 2. Consider a continuous-time Lyapunov equation in the form of (21) with N ¼ 2; r ¼ 2; Q1 ¼ Q2 ¼ I4, and
P ¼
�0:6 0:6

1 �1

� �
:

The matrices A01 and A02 are chosen as Hurwitz stable matrices, namely,
A01 ¼

�1:0000 �1:0000 �2:0000 1:0000
�0:6667 �3:5000 1:0000 1:1670
1:0000 0:5000 �3:0000 0:5000
�2:0000 �2:5000 1:0000 �2:5000

2
6664

3
7775;
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−40
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−10
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lo
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Δ(
k)

)

Gradient based iteration
Implicit iteration
Direct iteration

Fig. 2. Comparison of convergence rates for different iterative algorithms for discrete-time stochastic Lyapunov equation (3).
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A02 ¼

�1:3333 1:0000 �2:0000 0:3333
0:0000 �3:5000 1:0000 1:5000
1:0000 1:5000 �4:0000 �0:5000
�1:3333 �3:5000 1:0000 �1:1667

2
6664

3
7775;
while the matrices A11 and A12 are generated randomly by Matlab:
A11 ¼

0:9003 0:7826 0:6428 0:8436
�0:5377 0:5242 �0:1106 0:4764
0:2137 �0:0871 0:2309 �0:6475
�0:0280 �0:9630 0:5839 �0:1886

2
6664

3
7775;

A12 ¼

0:8709 �0:8842 �0:7222 �0:4556
0:8338 �0:2943 �0:5945 �0:6024
�0:1795 0:6263 �0:6026 �0:9695
0:7873 �0:9803 0:2076 0:4936

2
6664

3
7775:
We first study the convergence of the transformation based direct iteration in (25) for different values of ai; i 2 N . The spec-
tral radius of the matrix H defined in (26) as a function of a1 and a2 is plotted in Fig. 3. Clearly, we see that there exist a1 and
a2 such that qðHÞ is minimized, namely, the convergence rate of iteration (25) is maximized. The optimal values are approx-
imately equal to a1 ¼ 2:7 and a2 ¼ 3:0. This statement is further approved by Fig. 4 in which the convergence performances
of the iteration for different values of ai; i ¼ 1;2 are recorded. Here the y-axis is logðDðkÞÞ with
Fig. 3. Spectral radius of matrix H defined in (26) for different values of ai; i 2 N .
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Fig. 4. Convergence performances of direct iteration (25) for different values of ai; i 2 N .
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DðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

AT
0iPiðkÞ þ PiðkÞA0i þ

Xr

k¼1

AT
kiPiðkÞAki þ

XN

j¼1

pijPjðkÞ þ Q i

�����
�����

2

F

vuut :
Moreover, when ai; i ¼ 1;2 are taken as the optimal values and the initial conditions are chosen P1ð0Þ ¼ P2ð0Þ ¼ 0, we can
obtain the approximate solution as
P1ð50Þ ¼

0:6062 �0:1174 �0:1992 0:0301
�0:1174 0:3156 0:0937 �0:0175
�0:1992 0:0937 0:4302 0:1149
0:0301 �0:0175 0:1149 0:3843

2
6664

3
7775;

P2ð50Þ ¼

0:5396 �0:0148 �0:2386 �0:0689
�0:0148 0:4183 0:0473 �0:1514
�0:2386 0:0473 0:3474 0:1163
�0:0689 �0:1514 0:1163 0:3898

2
6664

3
7775:
The iteration error is kDð50Þk ¼ 4:3034� 10�15.
We next study the implicit iteration in (31). For different values of b1 and b2, the convergence rates of the iteration are

recorded in Fig. 5. Similar to the discrete-time case, from the figure we can conclude that the smaller the values of bi, the
faster the iteration will converge.
0 10 20 30 40 50 60 70 80
−35

−30

−25

−20

−15

−10

−5

0

5

steps

lo
g(

Δ(
k)

)

β1=β2=0

β1=β2=1

β1=β2=2

Fig. 5. Convergence rates of implicit iteration (31) for different values of bi; i 2 N .
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Fig. 6. Comparison of convergence rates for different algorithms for stochastic Lyapunov equation (21).
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Finally, we compare the proposed direct iteration in (25) and the implicit iteration in (31) to the gradient based iteration
given in [28]. Again, we see from Fig. 6 that the implicit iteration can lead to the fastest converge rate while the transforma-
tion based direct iteration can lead to more accurate approximate solutions.

6. Conclusion

This paper has considered the numerical solution of Lyapunov equations for Itô stochastic systems with Markovian jump
which includes the Markovian jump system as a special case by using positive operator theory. Two iterative algorithms are
established for Lyapunov equations in both discrete-time and continuous-time cases. If the associated stochastic system is
mean square stable, it is shown by using positive operator theory that these algorithms converge to the unique solution of
the Lyapunov equation. The proposed algorithms are very efficient in obtaining numerical solutions and may take important
functions in related control problems. Some numerical examples are given to validate the effectiveness of the proposed
methods.
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