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Two iterative algorithms are presented in this paper to solve the minimal norm least
squares solution to a general linear matrix equations including the well-known Sylvester
matrix equation and Lyapunov matrix equation as special cases. The first algorithm is
based on the gradient based searching principle and the other one can be viewed as its dual
form. Necessary and sufficient conditions for the step sizes in these two algorithms are pro-
posed to guarantee the convergence of the algorithms for arbitrary initial conditions. Suf-
ficient condition that is easy to compute is also given. Moreover, two methods are
proposed to choose the optimal step sizes such that the convergence speeds of the algo-
rithms are maximized. Between these two methods, the first one is to minimize the spec-
tral radius of the iteration matrix and explicit expression for the optimal step size is
obtained. The second method is to minimize the square sum of the F-norm of the error
matrices produced by the algorithm and it is shown that the optimal step size exits
uniquely and lies in an interval. Several numerical examples are given to illustrate the effi-
ciency of the proposed approach.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Linear matrix equations play an important role in linear systems theory. For example, the Sylvester matrix equation
AX þ XB ¼ C can be used to solve many control problems such as pole assignment [11], robust pole assignment [1], eigen-
structure assignment [12] and fault detection. Its special forms include the well-known Lyapunov matrix equation
AX þ XAT ¼ �C which has very important applications in stability analysis of linear systems [23].

Due to the important applications of this class of linear equations, many methods have been developed in the literature to
provide both analytical and numerical solutions. For analytical solutions, Desouza et al. [5] have used the controllability and
observability matrices to construct solutions to this class of equations. Besides analytical solutions, numerical methods
for solving linear matrix equations are also well investigated in the literature. For example, by using the hierarchical
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identification principle, iterative algorithms are proposed in [6,8,9] to solve general linear matrix equations and coupled Syl-
vester matrix equations. For more references on this topic, see [13,16,18–20] and the references therein.

However, to the best of our knowledge, few results can be found in the literature for the following general linear matrix
equation
Xr

i¼1

AiXBi þ
Xs

j¼1

CjX
TDj ¼ E; ð1Þ
where Ai 2 Rp�m;Bi 2 Rn�q;Cj 2 Rp�n;Dj 2 Rm�q; i ¼ 1;2; . . . ; r; j ¼ 1;2; . . . ; s, and E 2 Rp�q are known matrices and X 2 Rm�n is a
matrix to be determined. Only some special cases of (1) were considered very recently. In [21], the following linear equation
AXBþ CXTD ¼ E; ð2Þ
where A;B;C and D are some known constant matrices of appropriate dimensions and X is a matrix to be determined, was
considered. A more special case of (2), namely, the matrix equation AX þ XTC ¼ B, was investigated by Piao et al. [17]. The
Moore–Penrose generalized inverse was used in [17] to find explicit solutions to this matrix equation. These results, how-
ever, are difficult to be extended to the more general case (1).

In this paper, we consider least squares solutions with minimal norm to the general linear matrix Eq. (1) by using iterative
methods. In detail, we will solve the following least squares problem
min
X2Rm�n

Xr

i¼1

AiXBi þ
Xs

j¼1

CjX
TDj � E

�����
�����

F

:

Generally, solution to the above problem is not unique (see [4] for vector case). Therefore, we would like to search for the
solution among them having the minimal norm, which is known as minimal norm least squares solution.

Using iterations to approximate exact solution to matrix equation has been well studied in the literature. For instance, the
matrix sign function method was used in [3] to provide iterative solutions to the algebraic Riccati equations, cyclic Schur and
Hessenberg-Schur methods were used in [2] to solve the periodic Lyapunov and Sylvester equations, the hierarchical identifi-
cation principle, Hadmad product and star product were used in [6] to construct iterative algorithm for solving general Sylves-
ter matrix equations and coupled Sylvester matrix equations, and an iterative algorithm was also proposed in [22] to solve the
coupled discrete-time Markovian jump Lyapunov matrix equations. All these mentioned iteration based methods, however, are
not directly applicable to obtaining the minimal norm least squares solution to the general linear matrix Eqs. (2) and (1).

In this paper, we also search for numerical solutions to the problem stated above by using iterations. Two iterative algo-
rithms are proposed. Necessary and sufficient conditions that the step sizes in the algorithms should be satisfied to guaran-
tee the convergence of the algorithms are presented. Moreover, we also provide two methods to choose the optimal step
sizes in the algorithms such that the convergence rate, which is properly defined in this paper, is maximized. Some numer-
ical examples are given to show the effectiveness of this method. Our results generalize our early results [15]. The merits of
the proposed algorithms include: (1). They can be easily constructed without any factorizations on the coefficient matrices;
(2). Only matrix multiplication is required during the iteration; (3). Convergence of the algorithms can be guaranteed pro-
vided the step sizes in the algorithms are small and (4). The optimal step sizes in the algorithm such that the convergence
rates are maximized are given explicitly.

The remainder of this paper is organized as follows. Problem formulation is given in Section 2. The iterative algorithms to
the problem and their convergence properties are proposed in Section 3. In Section 4, which contains two subsections,
namely, Sections 4.1 and 4.2, we respectively give two methods to find the optimal step size such that the convergence rate
of the algorithm is maximized. Some numerical examples are worked out in Section 5 to illustrate the effectiveness of the
proposed algorithms and Section 6 concludes the paper.

Notations: Throughout this paper, we use AT
; trðAÞ;qðAÞ; kðAÞ, kAkF; kAk2;NullðAÞ; ImageðAÞ, rmaxðAÞ and rminðAÞ to denote

the transpose, trace, the spectral radius, the eigenvalue set, the Frobenius norm, the 2-norm, the null space, the image space,
the maximal singular value and the minimal singular value of matrix A, respectively. The notation P > 0 means that P is sym-
metric and positive definite. In denotes an identity matrix of dimension n. If the subscript is omitted, the dimensions are con-
sistent with the context. The Kronecker product of two matrices A and B is denoted by A� B. The stretching function vecðAÞ
where A ¼ ½a1; a2; . . . ; am� is defined as vecðAÞ ¼ aT

1; a
T
2; . . . ; aT

m

� �T. Let A be a nonsingular matrix. Then the condition number of
A is defined as condðAÞ ¼ rmaxðAÞ

rminðAÞ
.

2. Problem formulation

Consider the following general linear matrix equation
Xr

i¼1

AiXBi þ
Xs

j¼1

CjX
TDj ¼ E; ð3Þ
where Ai 2 Rp�m, Bi 2 Rn�q, Cj 2 Rp�n;Dj 2 Rm�q, i ¼ 1;2; . . . ; r; j ¼ 1;2; . . . ; s; E 2 Rp�q are known matrices and X 2 Rm�n is a
matrix to be determined. The problem we are interested is stated as follows.
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Problem 1. Let
-min ¼ min
X2Rm�n

Xr

i¼1

AiXBi þ
Xs

j¼1

CjX
TDj � E

�����
�����

F

8<:
9=;: ð4Þ
Find a matrix X 2 Rm�n such that kXkF is minimized and
Xr

i¼1

AiXBi þ
Xs

j¼1

CjX
TDj � E

�����
�����

F

¼ -min: ð5Þ
Before giving solutions to Problem 1, we first introduce the following lemma.

Lemma 1 [4]. Let X 2 Rm�n be any matrix. Then
vecðXTÞ ¼ Pðm; nÞvecðXÞ;
where Pðm;nÞ is uniquely determined by the integers m and n. Moreover, the matrix Pðm;nÞ has the following properties.

1. For two arbitrary integers m and n, Pðm;nÞ has the following explicit form
Pðm;nÞ ¼

ET
11 ET

12 � � � ET
1n

ET
21 ET

22 � � � ET
2n

..

. ..
. . .

. ..
.

ET
m1 ET

m2 � � � ET
mn

266664
377775

mn�mn

;

where Eij; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n is an m� n matrix with the element at position ði; jÞ being 1 and the others
being 0.
2. For two arbitrary integers m and n, Pðm;nÞ is a unitary matrix, i.e.,
Pðm; nÞPTðm;nÞ ¼ PTðm; nÞPðm; nÞ ¼ Imn:
3. For two arbitrary integers m and n, there holds Pðm;nÞ ¼ PTðn;mÞ.
4. Let m; n; p and q be four integers and A 2 Rm�n;B 2 Rp�q. Then
Pðm;pÞðB� AÞ ¼ ðA� BÞPðn; qÞ:
By using the Kronecker product, Lemma 1 and the well-known formulation
vecðAXBÞ ¼ ðBT � AÞvecðXÞ; ð6Þ
the linear matrix Eq. (3) can be converted to the vector form !x ¼ e with x ¼ vecðXÞ; e ¼ vecðEÞ and
! ¼
Xr

i¼1

BT
i � Ai

� �
þ
Xs

j¼1

DT
j � Cj

� �
Pðm;nÞ 2 Rpq�mn: ð7Þ
With these notations, the expression in (4) can be rewritten as
-min ¼ min
x2Rmn

k!x� vecðEÞkF: ð8Þ
As a result, Problem 1 can be restated as the following new problem.

Problem 2. Let -min be defined as (8). Find a vector x 2 Rmn such that kxkF is minimized and
k!x� vecðEÞkF ¼ -min: ð9Þ
Regarding solution to Problem 2, we have the following simple result whose proof is omitted (see, for example, [4]).

Lemma 2. Problem 2 has a unique solution x1 given by x1 ¼ !þvecðEÞ where !þ is the unique Moore–Penrose inverse of !.
Especially, if
rankð!Þ ¼ mn; ð10Þ

then the unique solution is given by
x1 ¼ ð!T!Þ�1!TvecðEÞ; ð11Þ
and if
rankð!Þ ¼ pq; ð12Þ
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then the unique solution is given by
x1 ¼ !Tð!!TÞ�1vecðEÞ: ð13Þ
In the remaining of this paper, the unique solution to Problem 1 is denoted by X1. Clearly, we have
x1 ¼ vecðX1Þ: ð14Þ
3. Iterative solution to Problem 1

The basic idea of our method is to use the gradient based iteration to approximate the exact solution to Problem 1. Denote
JðXÞ ¼ 1
2

Xr

i¼1

AiXBi þ
Xs

j¼1

CjX
TDj � E

�����
�����

2

F

: ð15Þ
Then the gradient of JðXÞ can be easily computed. The result is given as the following lemma whose proof is omitted for
simplicity.

Lemma 3. The gradient @JðXÞ
@X where JðXÞ is defined as (15), is given by
@JðXÞ
@X

¼
Xr

i¼1

AT
i DðXÞB

T
i þ

Xs

j¼1

DjD
TðXÞCj; ð16Þ
where
DðXÞ ¼
Xr

v¼1

AvXBv þ
Xs

l¼1

ClX
TDl � E: ð17Þ
Then our gradient based iterative algorithm can be constructed as follows:
XðkÞ ¼ Xðk� 1Þ � l
Xr

i¼1

AT
i DðXðk� 1ÞÞBT

i þ
Xs

j¼1

DjD
TðXðk� 1ÞÞCj

 !
; ð18Þ
where l is the step size to be specified later and
DðkÞ ¼
Xr

v¼1

AvXðkÞBv þ
Xs

l¼1

ClX
TðkÞDl � E: ð19Þ
We then have the following result regarding the convergence of iteration (18).

Theorem 1. Assume that (10) is satisfied. Let XðkÞ; k ¼ 1;2; . . . be iteratively given by (18) with initial condition Xð0Þ. Then XðkÞ
converges to X1, i.e., limk!1XðkÞ ¼ X1, for arbitrary initial condition Xð0Þ if and only if
0 < l < lmax ¼
2

r2
maxð!Þ

; ð20Þ
where ! is defined as (7).

Proof. Taking vec on both sides of (19) and using Lemma 1 gives
vecðDðXðkÞÞÞ ¼ !vecðXðkÞÞ � vecðEÞ: ð21Þ
Similarly, it follows from (18) that
vecðXðkÞÞ ¼ vecðXðk� 1ÞÞ � l
Xr

i¼1

Bi � AT
i

� �
þ
Xs

j¼1

CT
j � Dj

� �
Pðp; qÞ

 !
vecðDðXðk� 1ÞÞÞ: ð22Þ
By using Lemma 1, we have
Xs

j¼1

CT
j � Dj

� �
Pðp; qÞ ¼ Pðn;mÞ

Xs

j¼1

Dj � CT
j

� �
: ð23Þ
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Therefore, (22) can be written as
vecðXðkÞÞ ¼ vecðXðk� 1ÞÞ � l
Xr

i¼1

Bi � AT
i

� �
þ Pðn;mÞ

Xs

j¼1

Dj � CT
j

� � !
vecðDðXðk� 1ÞÞÞ

¼ vecðXðk� 1ÞÞ � l
Xr

i¼1

BT
i � Ai

� �
þ
Xs

j¼1

DT
j � Cj

� �
PTðn;mÞ

 !T

vecðDðXðk� 1ÞÞÞ

¼ vecðXðk� 1ÞÞ � l
Xr

i¼1

BT
i � Ai

� �
þ
Xs

j¼1

DT
j � Cj

� �
Pðm;nÞ

 !T

vecðDðXðk� 1ÞÞÞ

¼ vecðXðk� 1ÞÞ � l!TvecðDðXðk� 1ÞÞÞ: ð24Þ
Inserting (21) into (24) gives
vecðXðkÞÞ ¼ ðI � l!T!ÞvecðXðk� 1ÞÞ þ l!TvecðEÞ: ð25Þ
Then it follows from (11) that
!T!vecðX1Þ ¼ !TvecðEÞ: ð26Þ
Hence, by substituting (26) into (25), we obtain
vecðXðkÞÞ � vecðX1Þ ¼ ðI � l!T!ÞvecðXðk� 1ÞÞ þ l!T!vecðX1Þ � vecðX1Þ ¼ ðI � l!T!ÞðvecðXðk� 1ÞÞ � vecðX1ÞÞ;
which, by denoting X ¼ X � X1, can be written as
vecðXðkÞÞ ¼ ðI � l!T!ÞvecðXðk� 1ÞÞ: ð27Þ
Clearly, it follows from the above relation that limk!1XðkÞ ¼ 0 for arbitrary initial condition Xð0Þ if and only if I � l!T! is
Schur stable, i.e., qðI � l!T!Þ < 1. We note that I � l!T! is a symmetric matrix. Therefore, we have kðI � l!T!Þ ¼
f1� lr2

i ð!Þg
mn
i¼1 and
qðI � l!T!Þ ¼ max
16i6mn

fj1� lr2
i ð!Þjg:
Hence qðI � l!T!Þ < 1 if and only if j1� lr2
maxð!Þj < 1 which is equivalent to (20). The proof is completed. h

Remark 1. If l ¼ lmax, then the algorithm in (18) does not converge to X1 for arbitrary initial condition according to The-
orem 1. Nevertheless, it converges to a matrix that is bounded in norm and dependent on the initial condition Xð0Þ. To see
this, we note that
kðI � lmax!
T!Þ ¼ f�1; k1; k2; . . . ; kpg;
where jkij < 1; i ¼ 1;2; . . . ; p, and moreover, the algebraic multiplicity and geometric multiplicity for the eigenvalue �1 are
the same. Therefore, it follows from the discrete-time linear system theory (see, for instance, [14]) that the solution to the
difference Eq. (27) is bounded in norm for arbitrary bounded initial condition. This fact can also be observed in the examples
given later.

The following proposition can be obtained immediately.

Proposition 1. Assume that (10) is satisfied. Let l satisfy inequality (20) and XðkÞ; k ¼ 1;2; . . . be iteratively produced by the
iteration (18). Then
kXðkÞ � X1kF < kXðk� 1Þ � X1kF; 8k P 1: ð28Þ
Proof. Denote
xðkÞ ¼ vecðXðkÞÞ: ð29Þ
Then it follows from (27) that
xTðkÞxðkÞ ¼ xTðk� 1ÞðI � l!T!Þ2xðk� 1Þ;
which can be equivalently written as
xTðkÞxðkÞ � xTðk� 1Þxðk� 1Þ ¼ xTðk� 1ÞFðlÞxðk� 1Þ;
with
FðlÞ ¼ �l!T!ð2I � l!T!Þ:
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Note that l satisfies (20), then 2I � l!T! is positive definite. Since l!T! and 2I � l!T! are commutable, the matrix FðlÞ is
symmetric and negative definite. As a result, we get
kxðkÞk2
2 < kxðk� 1Þk2

2;
which is equivalent to (28) as
kXk2
F ¼ kvecðXÞk2

2: � ð30Þ
If we use kXðkÞ � X1kF to denote the distance between XðkÞ and X1, then Proposition 1 indicates that the distance be-
tween XðkÞ and X1 decreases monotonously as k increases. Therefore, the closer the initial condition to the exact solution
X1, the fewer the iteration steps the algorithm will need. But it is difficult to guess an initial condition that is sufficiently
close to X1. In practice, we can simply take Xð0Þ ¼ 0.

Though Theorem 1 provides a necessary and sufficient condition to guarantee the convergence of the algorithm (18), the
right hand side of (20) is difficult to calculate as the matrix ! may have very high dimensions. Therefore, we next provide a
sufficient condition that is easy to compute.

Corollary 1. Assume that (10) is satisfied. Let XðkÞ; k ¼ 1;2; . . . be iteratively produced by the iteration in (18). Then
limk!1XðkÞ ¼ X1 holds true for arbitrary initial condition Xð0Þ if
0 < l <
2
m1

or 0 < l <
2
m2

2

; ð31Þ
where m1 and m2 are, respectively, given by
m1 ¼ ðr þ sÞ
Xr

i¼1

kBik2
2kAik2

2 þ
Xs

j¼1

kDjk2
2kCjk2

2

 !
;

m2 ¼
Xr

i¼1

kBik2kAik2 þ
Xs

j¼1

kDjk2kCjk2; ð32Þ
and satisfy m2
2 6 m1

Proof. It follows from Lemma 1 that Pðm;nÞ is a unitary matrix. Therefore,
rmaxð!Þ ¼
Xr

i¼1

BT
i � Ai

� �
þ
Xs

j¼1

DT
j � Cj

� �
Pðm;nÞ

�����
�����

2

6

Xr

i¼1

BT
i � Ai

� ������
�����

2

þ
Xs

j¼1

DT
j � Cj

� �
Pðm; nÞ

�����
�����

2

¼
Xr

i¼1

BT
i � Ai

� ������
�����

2

þ
Xs

j¼1

DT
j � Cj

� ������
�����

2

6

Xr

i¼1

BT
i � Ai

��� ���
2
þ
Xs

j¼1

DT
j � Cj

��� ���
2
:

Since kA� Bk2 ¼ kAk2kBk2, we can further obtain
rmaxð!Þ 6
Xr

i¼1

kBik2kAik2 þ
Xs

j¼1

kDjk2kCjk2; ð33Þ
which in turn implies that
r2
maxð!Þ 6

Xr

i¼1

kBik2kAik2 þ
Xs

j¼1

kDjk2kCjk2

 !2

6 ðr þ sÞ
Xr

i¼1

kBik2
2kAik2

2 þ
Xs

j¼1

kDjk2
2kCjk2

2

 !
; ð34Þ
where we have used the following well-known inequality
Xp

i¼1

ai

 !2

6 p
Xp

i¼1

a2
i :
Substituting (33) and (34) into (20) gives (31). The proof is completed. h

Remark 2. The matrix ! will have large dimensions if the matrices in the Eq. (3) have large dimensions. In this case, it is
difficult to compute the singular value of ! directly. This implies that the proposed iteration (18) may be not suitable for
large matrices by using Theorem 1 where the singular value of ! is required. From the point of selecting step size, Corollary
1 is more useful than Theorem 1.
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Clearly, if the relation in (10) does not hold, then the iteration in (18) will not converge. In the following, we will present
another iterative algorithm to solve Problem 1 when the condition in (12) is met. Our new iteration is constructed as follows:
YðkÞ ¼ Yðk� 1Þ � l
Xr

i¼1

AiDðYðk� 1ÞÞBi þ
Xs

j¼1

CjD
TðYðk� 1ÞÞDj � E

 !
; ð35Þ
where
DðYðkÞÞ ¼
Xr

v¼1

AT
vYðkÞBT

v þ
Xs

l¼1

DlY
TðkÞCl; ð36Þ
with initial condition Yð0Þ and step size l that is to be determined later. Regarding the convergence of iteration (35), we can
present the following result.

Theorem 2. Assume that (12) is satisfied. Let X1 be the unique solution to Problem 1. Then the iteration (35) converges to a finite
matrix Y1 for arbitrary initial condition if and only if
0 < l <
2

r2
maxð!Þ

: ð37Þ
Furthermore, if (37) is satisfied and limk!1YðkÞ ¼ Y1, then
X1 ¼
Xr

i¼1

AT
i Y1BT

i þ
Xs

l¼1

DlY
T
1Cl: ð38Þ
Proof. Taking vec on both sides of (35) gives
vecðYðkÞÞ ¼ vecðYðk� 1ÞÞ þ lvecðEÞ

� l
Xr

i¼1

BT
i � Ai

� �
þ
Xs

j¼1

DT
j � Cj

� �
Pðm;nÞ

 !
vec DðYðk� 1ÞÞð Þ

¼ vecðYðk� 1ÞÞ � l!vecðDðYðk� 1ÞÞÞ þ lvecðEÞ: ð39Þ
On the other hand, taking vec on both sides of (36) and using (23) gives
vecðDðYðkÞÞÞ ¼
Xr

i¼1

Bi � AT
i

� �
þ
Xs

j¼1

CT
j � Dj

� �
P q;pð Þ

 !
vec YðkÞð Þ

¼
Xr

i¼1

Bi � AT
i

� �
þ Pðn;mÞ

Xs

j¼1

Dj � CT
j

� � !
vecðYðkÞÞ

¼
Xr

i¼1

BT
i � Ai

� �
þ
Xs

j¼1

Dj � CT
j

� �
PTðn;mÞ

 !T

vecðYðkÞÞ

¼
Xr

i¼1

BT
i � Ai

� �
þ
Xs

j¼1

Dj � CT
j

� �
Pðm;nÞ

 !T

vecðYðkÞÞ

¼ !TvecðYðkÞÞ: ð40Þ
Therefore, (39) can be written as
vecðYðkÞÞ ¼ ðI � l!!TÞvecðYðk� 1ÞÞ þ lvecðEÞ:
Similar to the proof of Theorem 1, the above iteration converges if and only if (37) is satisfied. Moreover, when (37) is met,
we have
vecðY1Þ ¼ ð!!TÞ�1vecðEÞ: ð41Þ
On the other hand, similar to the procedure used in obtaining (40), we can deduce from (38) that
vecðX1Þ ¼ !TvecðY1Þ: ð42Þ
Consequently, it follows from (41) and (42) that
vecðX1Þ ¼ !Tð!!TÞ�1vecðEÞ
which clearly indicates that X1 is the unique solution to Problem 1 in view of Lemma 2 and (14). h
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Remark 3. The iteration (35) can be regarded as the dual form of the iteration in (18). Similar results corresponding to Prop-
osition 1 and Corollary 1 to the iteration in (35) can be obtained, which are omitted for brevity.

Although Theorem 1 and Corollary 1 give conditions to choose the step size l to guarantee the convergence of the algo-
rithm (18), they do not provide a way to choose the ‘‘optimal” step size l such that the iteration in (18) converges fastest. In
fact, convergence rate is an important index for measuring the ability of an iterative algorithm. In the next section, we will
consider this problem in detail. As explained in Remark 3, iteration (35) can be regarded as the dual from of iteration (18), we
will only consider the iteration in (18) since corresponding results to iteration (35) can be obtained in a very similar way.

4. Convergence rate analysis of the algorithms

4.1. Convergence rate analysis by using spectral radius

Consider a linear iteration
XðkÞ ¼ AXðk� 1Þ þ B; XðkÞ 2 Rn�m; k P 1; ð43Þ
where A and B are constant matrices with appropriate dimensions. It is well known that the iteration in (43) converges to a
finite matrix X1 for arbitrary initial condition Xð0Þ if and only if qðAÞ < 1 [4]. Moreover, the smaller the qðAÞ, the faster the
iteration will converge. For this reason, the number � logðqðAÞÞ is usually used to denote the convergence rate of the itera-
tion (43) [4]. For clarity, we firstly introduce the following definition for convergence rate of the iteration (43).

Definition 1 [15]. Assume that the iteration (43) converges to the unique matrix X1 for arbitrary initial condition Xð0Þ. The
a-convergence rate for the iteration (43) is a scalar c ¼ � log b with 0 < b < 1 such that
kXðkÞ � X1ka 6 KbkkXð0Þ � X1ka; k P 0; ð44Þ
and there exists at least one Xð0Þ such that ‘‘=” hold in (44). In (44), K is a positive scalar independent of k and b, and a de-
notes a suitable matrix norm (e.g., a ¼ 2 or a ¼ F ).

Our next lemma shows that � logðqðAÞÞ can indeed be used to denote the 2-convergence rate of the iteration (43) in a
special case. The proof is similar to the proof of Lemma 2 in [15] and is thus omitted.

Lemma 4. Consider the iteration in (43) where A 2 Rn�n is a real symmetric matrix with qðAÞ < 1 and XðkÞ ¼ xðkÞ 2 Rn;8k P 0,
is a vector. Then the 2-convergence rate of the iteration (43) is � logðqðAÞÞ in the sense of Definition 1. Moreover, for arbitrary
initial condition xð0Þ, there holds
kxðkÞ � x1k2 6 qkðAÞkxð0Þ � x1k2: ð45Þ
We recall another technical lemma that will be used later.

Lemma 5 [15]. Assume that mi; i ¼ 1;2; . . . ;n, are some given positive scalars. Denote mmax ¼max16i6nfmig and
mmin ¼min16i6nfmig. Then
min
0<u< 2

mmax

max
16i6n
fj1� umijg ¼

mmax �mmin

mmax þmmin
: ð46Þ
Moreover, the unique uopt such that the above relation holds is
uopt ¼
2

mmax þmmin
:

Then we can prove the following result.

Theorem 3. Assume that (10) is satisfied. Let XðkÞ; k ¼ 1;2; . . . be iteratively given by (18) with initial condition Xð0Þ and step size
l satisfying (20). Then the F-convergence rate of the algorithm (18) is maximized if
l ¼ lsr
opt ¼

2
r2

maxð!Þ þ r2
minð!Þ

: ð47Þ
Moreover, if l is chosen as (47), then
kXðkÞ � X1kF 6
cond2ð!Þ � 1

cond2ð!Þ þ 1

 !k

kXð0Þ � X1kF; k P 0: ð48Þ
Proof. Note that I � l!T! is a Schur stable and symmetric matrix. Therefore, it follows from Lemma 4 that
� logðqðI � l!T!ÞÞ is the 2-convergence rate of the iteration (27). Hence, the 2-convergence rate of the iteration (27) is
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maximized if and only if � logðqðI � l!T!ÞÞ is maximized, or equivalently, qðI � l!T!Þ is minimized. That is to solve the
following optimization problem
min
0<l<lmax

fqðI � l!T!Þg ¼ min
0<l<lmax

max
16i6mn

fj1� lr2
i ð!Þjg

� �
: ð49Þ
We notice that (49) is in the form of (46). Therefore, according to Lemma 5, qðI � l!T!Þ is minimized if l is chosen as (47).
Moreover,
q I � lsr
opt!

T!
� �

¼ r2
maxð!Þ � r2

minð!Þ
r2

maxð!Þ þ r2
minð!Þ

¼ cond2ð!Þ � 1

cond2ð!Þ þ 1
: ð50Þ
As a result, it follows from (45) in Lemma 4 that
kxðkÞk2 6 qk I � lsr
opt!

T!
� �

kxð0Þk2; ð51Þ
which is equivalent to (48) in view of (30) and (50). At last, we show that l ¼ lsr
opt satisfies the condition (20). Since ! is of

full column rank, we have rminð!Þ – 0. That is lsr
opt < lmax. The proof is completed. h

Remark 4. We recall the well-known Conjugate-Gradient (CG) method for solving the linear matrix equation
Ax ¼ B; ð52Þ
where A is positive definite. Let x1 be the exact solution to (52) and xðkÞ be iteratively given by the CG method with initial
condition xð0Þ (see [4]). Then the CG iteration satisfies the following relation
kxðkÞ � x1kA 6 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
condðAÞ

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

condðAÞ
p

þ 1

 !k

kxð0Þ � x1kA; ð53Þ
where kxk2
A ¼ xTAx. It is very interesting to note that (48) is similar to (53). This similarity indicates that our method will

suffer the same problem as the CG method that the convergence performance becomes poor if A is badly conditioned. To
improve the convergence performance of the CG method when A is badly conditioned, the preconditioned CG method, which
is still a studying subject in the literature (e.g., [4]), is used instead. Our further study should adequately take this problem
into account.

For illustration of the proposed theory, see Example 1 in Section 5. However, lsr
opt is not always the optimal step size for

the iteration in (18). This can be observed by another simple example – Example 2 in Section 5. This phenomenon can be
explained as follows. We note that lsr

opt is the solution to the following min–max optimization problem
min
0<l<lmax

max
16i6N

fj1� lr2
i ð!Þjg:
This problem is quite similar to the well-known H1 optimal control problem (which is also a min–max problem):
min
KðsÞ stabilizing GðsÞ

sup
x2R
frmaxðTðjxÞÞg;
where TðsÞ ¼ G11ðsÞ þ G12ðsÞKðsÞðI � G22ðsÞKðsÞÞ�1G21ðsÞ with GðsÞ and KðsÞ being two rational and proper transfer function
matrices and GðsÞ admitting the following partition
G sð Þ ¼
G11ðsÞ G12ðsÞ
G21ðsÞ G22ðsÞ


 �
:

Optimal solution to min–max solution is conservative in practice as it is optimal in the ‘‘worst case” which may not happen
at all. This fact in H1 optimal control problem has been emphasized in many references (for example, [10,23]). In this paper,
the ‘‘worst case” is that the initial condition Xð0Þ should be chosen such that
I � lsr
opt!

T!
� �

xð0Þ
��� ���

2
¼ I � lsr

opt!
T!

� ���� ���
2

xð0Þk k2;
which is generally not satisfied in practice.
Therefore, we will give in the next subsection another approach to select the optimal step size l such that a more rea-

sonable objective function for measuring the convergence performance of the iteration in (18) is minimized.

4.2. Convergence rate analysis by using error square sum

It is nature to choose the following index function
Jeðl;X0Þ ¼
X1
k¼0

kXðkÞ � X1k2
F ; ð54Þ
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which can be understood as the square sum of the error of the iteration in (18), to measure the convergence rate of the algo-
rithm in (18). Obviously, the smaller the Jeðl;X0Þ, the better the convergence performance of the algorithm (18) is. In this
subsection, we will study the property of Jeðl;X0Þ as a function of l and X0, and investigate how to choose the parameter
l such that Jeðl;X0Þ is minimized. First we need a compact expression for Jeðl;X0Þ.

Lemma 6. Assume that ! is of full column rank and XðkÞ; k ¼ 1;2; . . . are iteratively given by (18) with initial condition Xð0Þ ¼ X0

and step size l satisfying (20). Let Jeðl;X0Þ be defined as (54). Then
Jeðl;X0Þ ¼ xT
0QðlÞx0; ð55Þ
where x0 ¼ vecðX0 � X1Þ and
QðlÞ ¼ l!T! 2I � l!T!
� �� ��1

: ð56Þ
Proof. Let XðkÞ and xðkÞ be related with (29). It follows from (27) that
xTðkÞxðkÞ ¼ xT
0ððI � l!T!Þ2Þkx0:
Therefore, in view of (30), we have
Je l;X0ð Þ ¼
X1
k¼0

XðkÞk k2
F

¼
X1
k¼0

kxðkÞk2
2

¼
X1
k¼0

xTðkÞxðkÞ

¼
X1
k¼0

xT
0ððI � l!T!Þ2Þkx0: ð57Þ
Since l satisfies (20), the matrix ðI � l!T!Þ2 is Schur stable and
X1
k¼0

ððI � l!T!Þ2Þk ¼ ðI � ðI � l!T!Þ2Þ�1 ¼ QðlÞ: ð58Þ
Substituting (58) into (57) gives (55). This completes the proof. h

We give another technical lemma whose proof is given in Appendix A.

Lemma 7. Assume that ! is of full column rank and l satisfies (20). Let QðlÞ be defined as (56). Then
dQðlÞ
dl

¼ �2ðl!T!ð2I � l!T!ÞÞ�2ðI � l!T!Þ!T!; ð59Þ

d2QðlÞ
dl2 ¼ 8l�3ð!T!Þ�1ð2I � l!T!Þ�3ðI � l!T!Þ2 þ 2ðlð2I � l!T!ÞÞ�2

: ð60Þ
Moreover, d2

dl2 QðlÞ is positive definite.

Let ! admit the following singular value decomposition
! ¼ USVT; ð61Þ

where U and VT are two unitary matrices and S is a diagonal matrix with the following partitions
S ¼

r1Iv1 0 � � � 0
0 r2Iv2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � rhIvh

266664
377775; VT ¼

VT
1

VT
2

..

.

VT
h

2666664

3777775; ð62Þ
in which r1 > r2 > � � � > rh > 0 are the singular values of ! and v i; i ¼ 1;2; . . . ;h, satisfying Rh
i¼1v i ¼ mn, are some positive

scalars representing the multiplicities of the corresponding singular values ri; i ¼ 1;2; . . . ;h. Hence rmaxð!Þ ¼ r1 and
rminð!Þ ¼ rh.

Theorem 4. Let ! be of full column rank and XðkÞ; k ¼ 1;2; . . . be iteratively given by (18) with initial condition Xð0Þ and step size
l satisfying (20). Assume that X0 – X1. Then there exists a unique optimal value
less
opt ¼ less

opt X0ð Þ 2
0;lmax

� 
VT

1x0 – 0

0;lmax

� �
VT

1x0 ¼ 0

(
ð63Þ



Z.-Y. Li et al. / Applied Mathematics and Computation 215 (2010) 3547–3562 3557
such that the index function Jeðl;X0Þ defined as (54) is minimized. Furthermore, the optimal value less
opt has the following

estimation
1
r2

maxð!Þ
6 less

opt 6
1

r2
minð!Þ

: ð64Þ
Proof. Denote x0 ¼ vecðX0 � X1Þ. Since l satisfies (20), it follows from Lemma 7 that d2

dl2 QðlÞ is positive definite. As
X0 – X1 ) x0 – 0, we conclude that
d2Jeðl;X0Þ
dl2 ¼ xT

0
d2

dl2 QðlÞx0 > 0:
That is to say, for arbitrary initial condition X0 – X1, the index function Jeðl;X0Þ is a convex function of l with l 2 ð0;lmaxÞ.
Therefore, there exists one, and only one, optimal value less

opt ¼ less
optðX0Þ 2 ½0;lmax� such that Jeðl;X0Þ is minimized.

Since x0 – 0. It follows from (57) that
lim
l!0þ

Jeðl;X0Þ ¼
X1
k¼0

xT
0x0 ¼ 1: ð65Þ
On the other hand, by using (61) and (62), we have
lmax!
T!� I ¼ VbSVT;
with
bS ¼
Iv1 0 � � � 0
0 br2Iv2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � brhIvh

266664
377775;
and bri ¼ 2ri
r1
� 1; i ¼ 2;3; . . . ;h. It is easy to verify that jbrij < 1; i ¼ 2;3; . . . ;h. Therefore, we can obtain
Jeðl;X0Þ ¼
X1
k¼0

xT
0VbS2kVTx0 ¼

X1
k¼0

xT
0V1VT

1x0 þ
Xh

i¼2

xT
0ViV

T
i x0

1� br2
i

: ð66Þ
Now we consider the following two cases.
Case 1: VT

1x0 – 0. Then it follows from (66) and VT
1x0 – 0 that
lim
l!l�max

Jeðl;X0Þ ¼ 1: ð67Þ
As Jeðl;X0Þ is a convex function with respect to l, Eqs. (65) and (67) clearly imply that less
opt 2 ð0;lmaxÞ which is the top

expression in (63).
Case 2: VT

1x0 ¼ 0. In this case, in view of (66), we have
lim
l!l�max

Jeðl;X0Þ ¼
Xh

i¼2

xT
0ViV

T
i x0

1� br2
i

<1: ð68Þ
The above equation and (54) imply that limk!1XðkÞ ¼ 0, i.e., the iteration in (18) converges to X1 Eq. (68) also indicates that
Jeðl;X0Þ may be minimized when l ¼ lmax. Therefore, we have the second expression in (63).

We next show (64). It follows from (59) that d
dl QðlÞ < 0 if and only if I � l!T! > 0 which holds if and only if

l < 1=r2
maxð!Þ. That is to say, if l < 1=r2

maxð!Þ, then for arbitrary initial condition X0, Jeðl;X0Þ decreases as l increases.
Therefore, the inequality in the left hand side of (64) should be satisfied. Similarly, d

dl QðlÞ > 0 if and only if I � l!T! < 0
which is equivalent to l > 1=r2

minð!Þ. That is to say, if l > 1=r2
minð!Þ, then for arbitrary initial condition X0; Jeðl;X0Þ

increases as l increases. Therefore, we have less
opt < 1=r2

minð!Þ which is just the inequality in the right hand side of (64). The
proof is completed. h

Remark 5. Notice that VT
1x0 ¼ 0 can be equivalently written as
x0 2 Null VT
1

� �
¼ Image

VT
2

..

.

VT
h

2664
3775

0BB@
1CCA;
where VT
i 2 Rv i�mn; i ¼ 1;2; . . . ;h. Since v1 is a small integer in general, it follows that VT

1x0 – 0 is satisfied for ‘‘almost all”
initial condition X0. Therefore less

opt 2 ð0;lmaxÞ for ‘‘almost all” initial condition X0.
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Remark 6. Though the existence of the optimal step size less
opt is guaranteed according to Theorem 4, it is hard to obtain such

optimal value in practice as it is dependent on the initial condition X0 and the exact solution X1. Note that we have
r2

maxð!Þ � r2
minð!Þ in general, the inequality (64) can be simplified as
1
r2

maxð!Þ
6 less

opt <
2

r2
maxð!Þ

¼ lmax:
Our experiences from simulations show that less
opt chosen as a

r2
maxð!Þ

;1 6 a 6 1:7 can lead to good convergence performances
(see one of the examples in Section 5).

Remark 7. As pointed out by the reviewer, since less
opt depends on the initial matrix X0, its value cannot be used to measure

the convergence of the algorithm generally. However, the convergence of Jeðl;X0Þ defined in (54) and the iteration (18) is
consistent, namely, if Jeðl1;X0Þ < Jeðl2;X0Þ, then the iteration (18) with l ¼ l1 converges faster than that with l ¼ l2. More-
over, determining l also involves the singular value of large matrix !. From this point of view, the result in Theorem 4 has
more theoretical meaning than practical one.

An illustrative example for the developed theory is Example 3 given in Section 5.

5. Some numerical examples

In this section, we use several examples to validate the effectiveness of the developed results.

Example 1. Consider the following linear matrix equation
AX þ XTB ¼ C; ð69Þ
where A and B are, respectively, given by
A ¼
0:9268 0:3739 0:5080
0:3157 0:1542 0:4521
0:3271 0:3044 0:3816

264
375; B ¼

0:1834 0:5337 0:9326
0:1499 0:8615 0:0326
0:9278 0:1393 0:0036

264
375:
The matrix C is obtained by substituting a specified X1 into (69). In particular, we set
X1 ¼
1:000 1:000 1:000
�1:000 �1:000 �1:000
�1:000 1:000 1:000

264
375; C ¼

�0:8494 0:5938 2:7051
0:6707 0:4251 1:8256
0:9022 1:9388 1:9819

264
375:
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steps
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||X
(k

)−
X ∞|| F)

μ=μopt
sr

μ=0.5κ
μ=κ
μ=1.5κ
μ=2κ

Fig. 1. Convergence performances of the algorithm (18) for Example 1 with different step size l. In the figure, j ¼ 1
r2

maxð!Þ
.
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Shown in Fig. 1 are the convergence performances of the algorithm with different step size l and the same initial condition
Xð0Þ ¼ 0. It is clear to see that the convergence performance associated with l ¼ lsr

opt is better than that with the other step
sizes, which coincides with Theorem 3.

Example 2. Still consider matrix Eq. (69) with the following coefficient matrices A;B;C and the unique solution X1:
A ¼
0:1476 0:6364 0:2561
0:8492 0:5904 0:6943
0:9883 0:1258 0:9416

264
375; B ¼

0:4434 0:2236 0:3336
0:4588 0:1729 0:0788
0:2192 0:8514 0:0130

264
375;

X1 ¼
1:000 1:000 1:000
�1:000 �1:000 �1:000
�1:000 1:000 1:000

264
375; C ¼

�0:9795 �1:0333 1:2819
�0:2316 1:8553 2:4017
1:0424 3:0520 2:4810

264
375:
The computing results are given in Fig. 2 with different step sizes and the same initial condition Xð0Þ ¼ 0. We note that the
convergence performance associated with lsr

opt is in fact not the best one. On the other hand, the optimal step size is about
1:7

r2
maxð!Þ

observed from the figure.

Example 3. Consider a linear matrix equation in the form of
AXBþ CXDþ EXTF ¼ G: ð70Þ
The coefficient matrices A;B;C;D; E; F and G and the unique solution X1 are, respectively, given by
A ¼
1 �1
1 1


 �
; B ¼

1 1
�1 1


 �
; C ¼

2 �1
1 2


 �
; D ¼

1 �1
1 1


 �
;

E ¼
�1 1
�1 �1


 �
; F ¼

1 �1
1 �1


 �
; G ¼

9 �5
�2 12


 �
; X1 ¼

1 1
�1 2


 �
:

In the above, the matrices A;B;C and D are borrowed from [9], X1 is specified and G is obtained by substituting A;B;C;D; E; F
and X1 into Eq. (70). We also compare our method with the one proposed in [9].

Shown in Fig. 3 is the convergence performance comparison for different step size l and the algorithm proposed in [9].
With the given data, lmax ¼ 0:0539;lsr

opt ¼ 0:0499 and less
opt ¼ 0:0523 which is obtained by running a searching program for

the initial condition Xð0Þ ¼ 0. We note that less
opt ¼ 1:94

r2
maxð!Þ

. It is clear to see that the convergence rate with l ¼ less
opt is larger

than that with l ¼ lsr
opt and the algorithm proposed in [9]. Finally, the CPU time of our method with less

opt ¼ 1:94
r2

maxð!Þ
is 0.83 s
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steps

lo
g(

||X
(k

)−
X ∞|| F)

μ=μopt
sr

μ=0.2κ
μ=κ
μ=1.5κ
μ=1.7κ

Fig. 2. Convergence performances of the algorithm (18) for Example 2 with different step size l. In the figure, j ¼ 1
r2

maxð!Þ
.
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μ=μopt
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Fig. 3. Convergence performances of the algorithm (18) for Example 3 with different step size l. In the figure, j ¼ 1
r2

maxð!Þ
.
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while the CPU time of the method in [9] is 0.92 s (both algorithms are run in an Intel 1.73-GHz computer and are stopped if
logðkXðkÞ � X1k2Þ 6 �16).

Example 4. Consider the following least squares problem
min
X
kAXBþ CXTD� EkF; ð71Þ
where A;C 2 R20�20;B;D 2 R20�30 and E 2 R20�30 are known and X 2 R20�20 is to be determined. Similar to [7], the matrices
A;B; C;D and E are generated in Matlab by using the following code:
randð‘state’;0Þ;
A ¼ ½triuðrandð20;20Þ;1Þ þ diagð10þ diagðrandð20ÞÞÞ�;
B ¼ ½triuðrandð20;20Þ;1Þ þ diagð10þ diagðrandð20ÞÞÞ;0:1 � randð20;10Þ�;
C ¼ ½triuðrandð20;20Þ;1Þ þ diagð10þ diagðrandð20ÞÞÞ�;
D ¼ ½triuðrandð20;20Þ;1Þ þ diagð10þ diagðrandð20ÞÞÞ;0:1 � randð20;10Þ�;
E ¼ 0:1 � randð20;30Þ;
Notice that C 2 R600�400 is of full column rank. Therefore, we can use the iteration in (18) and (19) to produce the unique least
squares solution to problem (71). Here the step size is chosen as l ¼ 2

m2
2

where m2 is given by (32) and the initial condition is

chosen as Xð0Þ ¼ 0. The exact solution to the least squares problem (71) is computed as vecðX1Þ ¼ ð!T!Þ�1!TvecðEÞ. Using
such direct Kronecker product approach to solve this high-dimensional equation, the computational time is 80.90 s on an
Intel 1.73-GHz computer. The computational time is 2.6 s on the same computer by using our algorithm. This result clearly
implies the effectiveness of the proposed approach.
6. Concluding remarks

This paper is concerned with numerical solutions to the minimal norm least squares solution to general linear matrix
equations. Two iterative algorithms are proposed. The first one is established by using the gradient based optimization prin-
ciple while the other one can be viewed as its dual form. Necessary and sufficient conditions are given for the step sizes such
that the algorithms converge for arbitrary initial conditions. Also, a simple sufficient condition that is easy to test is also pre-
sented. To ensure a good convergence performance of the proposed algorithms, two methods are proposed to select the opti-
mal step size such that the convergence rate of the algorithms is maximized. Between these two methods, the first one is
established based on the criterion of minimizing the spectral radius of the iteration matrix while the second one is obtained
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by minimizing the square sum of the F-norm of the error matrices associated with the algorithm. Several numerical exam-
ples are given to illustrate the effectiveness of the proposed method.

The proposed method is easily extended to solve coupled Sylvester matrix equations [6], periodic Lyapunov matrix equa-
tions and periodic Sylvester matrix equations [2]. Upon the present results, two interesting problems listed below are re-
quired to be considered in the future.

1. How to use the preconditioning method in CG algorithm to improve the convergence performance of the proposed algo-
rithm when the condition number of ! (see (7)) is large.

2. How to generate this technique to the field of solving nonlinear matrix equations such as algebraic Riccati equations.
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Appendix A. Proof of Lemma 7

Note that !T!; ð!T!Þ�1;2I � l!T!; ð2I � l!T!Þ�1; I � l!T! and ðI � l!T!Þ�1 are all commutable. Let AðtÞ be a matrix
function of the scalar t. Then
dA�1ðtÞ
dt

¼ �A�1ðtÞdAðtÞ
dt

A�1ðtÞ: ð72Þ
With the help of this formulation, we get
dQðlÞ
dl

¼ �ðl!T!ð2I � l!T!ÞÞ�1 dðl!T!ð2I � l!T!ÞÞ
dl

ðl!T!ð2I � l!T!ÞÞ�1

¼ �ðl!T!ð2I � l!T!ÞÞ�1ð!T!ð2I � l!T!Þ þ l!T!ð�!T!ÞÞðl!T!ð2I � l!T!ÞÞ�1

¼ �2ðl!T!ð2I � l!T!ÞÞ�1XðI � l!T!Þðl!T!ð2I � l!T!ÞÞ�1

¼ �2ðl!T!ð2I � l!T!ÞÞ�2ðI � l!T!Þ!T!; ð73Þ
which is (59). Using formulation (72) again, we have
d
dl
ðl!T!ð2I � l!T!ÞÞ�2

¼ �ðl!T!ð2I � l!T!ÞÞ�2 dðl!T!ð2I � l!T!ÞÞ2

dl
ðl!T!ð2I � l!T!ÞÞ�2

¼ �ðl!T!ð2I � l!T!ÞÞ�2ð4l!T!2ðI � l!T!Þð2I � l!T!ÞÞðl!T!ð2I � l!T!ÞÞ�2

¼ �4l�1ðI � l!T!Þð2I � l!T!Þ�1ðl!T!ð2I � l!T!ÞÞ�2
: ð74Þ
It follows from (73) that
d2QðlÞ
dl2 ¼ �2

dðl!T!ð2I � l!T!ÞÞ�2

dl
ðI � l!T!Þ!T!þ 2ðl!T!ð2I � lX!T!ÞÞ�2ð!T!Þ2

¼ �2
dðl!T!ð2I � l!T!ÞÞ�2

dl
ðI � l!T!Þ!T!þ 2ðlð2I � l!T!ÞÞ�2

:

Substituting (74) into the above equation and simplifying, gives (60). Obviously, d2

dl2 QðlÞ is symmetric and positive definite.
This completes the proof.
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